PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m944.
Published online 2008 June 19. doi:  10.1107/S1600536808017649
PMCID: PMC2961875

Poly[[diaqua­tris[μ4-(p-phenyl­enedi­oxy)diacetato]didysprosium(III)] dihydrate]

Abstract

The title dysprosium coordination polymer, {[Dy2(C10H8O6)3(H2O)2]·2H2O}n, was synthesized by reacting dysprosium(III) nitrate and the flexible ligand (p-phenyl­enedi­oxy)diacetic acid under hydro­thermal conditions. Each DyIII ion is coordinated by nine O atoms in a tricapped trigonal prismatic geometry. The DyO9 polyhedra form layers parallel to the bc plane. The rigid benzene rings of the anions link the layers along the a axis, forming a three-dimensional framework.

Related literature

For related literature, see: Eddaoudi et al. (2001 [triangle]); Li & Han (2006 [triangle]); Michl (1995 [triangle]); Yaghi et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m944-scheme1.jpg

Experimental

Crystal data

  • [Dy2(C10H8O6)3(H2O)2]·2H2O
  • M r = 1069.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m944-efi3.jpg
  • a = 12.080 (2) Å
  • b = 16.615 (3) Å
  • c = 8.8802 (18) Å
  • β = 109.32 (3)°
  • V = 1682.0 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.50 mm−1
  • T = 293 (2) K
  • 0.19 × 0.16 × 0.13 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.437, T max = 0.548
  • 16183 measured reflections
  • 3838 independent reflections
  • 3229 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.059
  • S = 1.05
  • 3838 reflections
  • 256 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.83 e Å−3
  • Δρmin = −0.93 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2000 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017649/ci2601sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017649/ci2601Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Scientific Research Found­ation for Returned Overseas Chinese Scholars, Chinese Education Ministry (20071108).

supplementary crystallographic information

Comment

Extensive efforts have been made to construct metal-organic frameworks (MOFs) owing to the benefits they offer such as functional mesoscopic phases, modified surfaces and designed crystals (Michl, 1995). The carboxylate group can offer more solid frameworks by forming M—O—C cluster. The recent works focus on metals and rigid multidentate phenylcarboxylates to form MOFs (Yaghi et al., 1998; Eddaoudi et al., 2001). The chemistry of rare earth compounds is always an attactive research direction due to their complicated geometry and many important applications. We have constructed a MOF by using a rare earth and a flexible multidentate carboxylate ligand with rigid phenyl core, and its crystal structure is reported here.

The asymmetric unit of the title compound contains one Dy atom, one and half (p-phenylenedioxy)diacetate (BDOA) anions and two water molecules. One of the anions is loacted in a general position (say BDOA-N) and the other (say BDOA-C) lies on an inversion center. Each DyIII cation is coordinated by two BDOA-C anions and four BDOA-N anions (Fig.1). The BDOA-C anion provides O atom from the carboxylate group, while the O atoms provided by the BDOA-N anions are from both carboxylate and phenol groups. Each DyIII ion is coordinated by nine O atoms; seven out of the nine O atoms are from carboxylate groups of six BDOA anions, one from the phenolic O atom of one BDOA anion and one from a coordinated water molecule. The coordination environment around the DyIII ion may be described as tricapped trigonal-prismatic, with Dy—O distances in the range 2.333 (10) Å-2.829 (4) Å and O—Dy—O angles in the range 47.86 (10)°-148.5 (1)°. A pair of DyIII atoms are bridged by the two ligands in different coordination modes (Fig. 1). The Dy···Dy distance is 4.1404 (9) Å.

The adjacent DyO9 polyhedra form edge-shared dimer, with four BDOA anions. The edge-shared DyO9 polyhedra are connected to form layers parallel to the bc plane. The rigid phenyl cores of BDOA anions link the layers along the a axis to form a three-dimensional framework (Fig.2). The uncoordinated water molecules are trapped inside the channel formed by the DyO9 polyhedra and phenyl core of the BDOA anions.

O—H···O hydrogen bonds are observed in the crystal structure (Table 1). The crystal structure of the title compound is similar to that of [La2(1,4-BDOA)3(H2O)]2].2H2O (Li et al., 2006).

Experimental

1,4-BDOA (0.30 g, 1.33 mmol) and Dy(NO3)3.6H2O (0.30 g, 0.67 mmol) were successively dissolved in aquous NaOH (0.13 g, 3.3 mmol NaOH/7.5 ml distilled water). The molar ratio of Dy(NO3)3.6H2O: 1,4-BDOA: NaOH: H2O was 1:2:5:630. The solution was continuously stirred for 1 h at room temperature. Finally, the solution was sealed into 23 ml autoclave and was heated at 438 K for 6 d and then naturally cooled to room temperature, to obtain colourless crystals of the title compound.

Refinement

Water H atoms were located in a difference Fourier map and were refined with O-H = 0.84 (1) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.5Ueq(O). The remaining H-atoms were placed in calculated positions (C-H = 0.93-0.97 Å) and were included in the refinement in the riding-model approximation, with U(H) = 1.2Ueq(C).

Figures

Fig. 1.
The dinuclear unit of the title polymeric complex, showing the atomic labelling and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity [symmetry codes: (i) -x, -y, -z; (ii) 1 + x, y, 1 + z; (iii) 1 + x, 1/2 - y, ...
Fig. 2.
A polyhedral and ball-stick plot of three-dimensional network in the complex, viewed along the c axis. O atoms are shown in dark gray and C atoms in light gray. H atoms have been omitted for clarity.

Crystal data

[Dy2(C10H8O6)3(H2O)2]·2H2OF000 = 1040
Mr = 1069.56Dx = 2.112 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 12.080 (2) Åθ = 3.0–27.5º
b = 16.615 (3) ŵ = 4.50 mm1
c = 8.8802 (18) ÅT = 293 (2) K
β = 109.32 (3)ºBlock, grey yellow
V = 1682.0 (6) Å30.19 × 0.16 × 0.13 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer3838 independent reflections
Radiation source: fine-focus sealed tube3229 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
Detector resolution: 10.00 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.0º
ω scansh = −15→15
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −21→21
Tmin = 0.437, Tmax = 0.548l = −11→11
16183 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059  w = 1/[σ2(Fo2) + (0.0147P)2 + 5.1969P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.009
3838 reflectionsΔρmax = 0.83 e Å3
256 parametersΔρmin = −0.93 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Dy10.047406 (15)0.117791 (10)0.06685 (2)0.01642 (6)
O1−0.1292 (2)0.11347 (17)−0.1593 (3)0.0272 (7)
O1W−0.0933 (3)0.2099 (2)0.1170 (4)0.0492 (11)
H16A−0.051 (5)0.246 (3)0.161 (7)0.074*
H16B−0.145 (4)0.228 (3)0.046 (6)0.074*
O2−0.1802 (2)−0.01721 (17)−0.1976 (3)0.0255 (6)
O3−0.3483 (2)0.15102 (17)−0.3735 (3)0.0252 (6)
O4−0.7742 (2)0.21741 (16)−0.8419 (3)0.0214 (6)
O5−0.8998 (3)0.35594 (17)−1.1500 (3)0.0244 (6)
O6−0.9551 (3)0.23500 (18)−1.0955 (4)0.0335 (8)
O70.1721 (3)0.09109 (18)−0.0991 (4)0.0312 (7)
O80.0580 (3)−0.0133 (2)−0.1313 (4)0.0362 (8)
O90.3019 (3)0.0217 (2)−0.2669 (4)0.0417 (9)
C1−0.1940 (3)0.0565 (2)−0.2298 (5)0.0199 (8)
C2−0.3012 (3)0.0727 (2)−0.3743 (5)0.0245 (9)
H2A−0.28030.0664−0.47010.029*
H2B−0.36110.0331−0.37780.029*
C3−0.4522 (3)0.1666 (2)−0.4950 (5)0.0193 (8)
C4−0.5023 (3)0.1140 (2)−0.6214 (4)0.0211 (8)
H4−0.46500.0660−0.62860.025*
C5−0.5082 (4)0.2383 (3)−0.4866 (5)0.0254 (9)
H5−0.47420.2739−0.40330.030*
C6−0.6087 (3)0.1338 (2)−0.7369 (5)0.0216 (8)
H6−0.64180.0991−0.82220.026*
C7−0.6154 (4)0.2576 (3)−0.6023 (5)0.0242 (9)
H7−0.65300.3058−0.59670.029*
C8−0.6648 (3)0.2037 (2)−0.7256 (4)0.0176 (8)
C9−0.7965 (3)0.2992 (2)−0.9002 (5)0.0210 (8)
H9A−0.72550.3229−0.90920.025*
H9B−0.82220.3317−0.82720.025*
C10−0.8909 (3)0.2962 (2)−1.0620 (4)0.0179 (8)
C110.1401 (3)0.0239 (3)−0.1581 (5)0.0242 (9)
C120.1937 (4)−0.0131 (3)−0.2737 (6)0.0397 (12)
H12A0.2054−0.0702−0.25100.048*
H12B0.1389−0.0075−0.38120.048*
C130.3980 (4)0.0092 (3)−0.1300 (6)0.0340 (11)
C140.4975 (4)0.0529 (3)−0.1204 (6)0.0361 (11)
H140.49600.0887−0.20140.043*
C150.4008 (4)−0.0437 (3)−0.0085 (6)0.0357 (11)
H150.3342−0.0731−0.01350.043*
O2W−0.2446 (4)0.2835 (3)−0.1500 (5)0.0604 (12)
H17A−0.229 (6)0.258 (4)−0.219 (7)0.091*
H17B−0.303 (5)0.260 (4)−0.133 (8)0.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Dy10.01428 (9)0.01573 (9)0.01598 (9)0.00025 (7)0.00061 (6)0.00046 (7)
O10.0256 (15)0.0200 (14)0.0229 (14)−0.0024 (12)−0.0097 (12)−0.0005 (12)
O1W0.044 (2)0.060 (3)0.0311 (19)0.0266 (19)−0.0044 (16)−0.0118 (18)
O20.0257 (15)0.0170 (14)0.0278 (15)0.0069 (11)0.0010 (13)0.0013 (12)
O30.0199 (14)0.0197 (14)0.0236 (14)0.0063 (11)−0.0093 (12)−0.0046 (12)
O40.0150 (13)0.0162 (14)0.0233 (14)−0.0012 (10)−0.0068 (11)0.0050 (11)
O50.0303 (15)0.0203 (14)0.0180 (13)−0.0027 (12)0.0018 (12)0.0078 (12)
O60.0304 (17)0.0256 (17)0.0284 (16)−0.0090 (13)−0.0118 (13)0.0125 (13)
O70.0436 (19)0.0238 (16)0.0336 (17)−0.0028 (14)0.0226 (15)−0.0064 (13)
O80.0270 (16)0.046 (2)0.0300 (16)−0.0127 (15)0.0015 (14)0.0092 (15)
O90.0338 (18)0.063 (2)0.0360 (18)0.0116 (17)0.0216 (16)0.0022 (17)
C10.0173 (18)0.022 (2)0.0179 (18)0.0061 (15)0.0022 (15)−0.0016 (16)
C20.021 (2)0.018 (2)0.026 (2)0.0061 (16)−0.0042 (17)−0.0026 (17)
C30.0142 (17)0.019 (2)0.0204 (18)0.0005 (14)0.0000 (15)0.0004 (15)
C40.0196 (18)0.0181 (19)0.0205 (18)0.0024 (16)−0.0003 (15)−0.0044 (16)
C50.023 (2)0.023 (2)0.021 (2)0.0029 (17)−0.0057 (17)−0.0077 (17)
C60.0202 (18)0.017 (2)0.0211 (19)−0.0009 (15)−0.0024 (16)−0.0027 (15)
C70.021 (2)0.020 (2)0.026 (2)0.0051 (16)0.0002 (17)−0.0025 (17)
C80.0128 (17)0.0201 (19)0.0166 (18)0.0003 (14)0.0003 (15)0.0046 (15)
C90.024 (2)0.0146 (19)0.0195 (19)0.0001 (15)0.0008 (16)0.0022 (15)
C100.0168 (18)0.0158 (19)0.0178 (18)0.0027 (14)0.0013 (15)0.0026 (15)
C110.020 (2)0.026 (2)0.027 (2)−0.0014 (16)0.0099 (17)0.0060 (18)
C120.036 (3)0.043 (3)0.043 (3)0.001 (2)0.017 (2)−0.014 (2)
C130.032 (2)0.036 (3)0.044 (3)0.011 (2)0.025 (2)−0.001 (2)
C140.043 (3)0.032 (3)0.047 (3)0.009 (2)0.032 (2)0.009 (2)
C150.033 (2)0.033 (3)0.050 (3)0.003 (2)0.026 (2)0.001 (2)
O2W0.055 (3)0.060 (3)0.051 (3)0.016 (2)−0.003 (2)−0.013 (2)

Geometric parameters (Å, °)

Dy1—O8i2.333 (3)C3—O31.382 (4)
Dy1—O2i2.341 (3)C3—C51.385 (5)
Dy1—O12.399 (3)C3—C41.392 (5)
Dy1—O6ii2.417 (3)C4—C61.392 (5)
Dy1—O5iii2.421 (3)C4—H40.93
Dy1—O1W2.435 (4)C5—C71.399 (5)
Dy1—O72.471 (3)C5—H50.93
Dy1—O4ii2.624 (3)C6—C81.366 (5)
Dy1—O82.830 (4)C6—H60.93
O1—C11.255 (5)C7—C81.387 (5)
O1W—H16A0.80 (3)C7—H70.93
O1W—H16B0.79 (3)C9—C101.512 (5)
O2—C11.256 (5)C9—H9A0.97
O3—C31.382 (4)C9—H9B0.97
O3—C21.421 (5)C11—C121.514 (6)
O4—C81.400 (4)C12—H12A0.97
O4—C91.448 (4)C12—H12B0.97
O5—C101.246 (5)C13—C141.382 (7)
O6—C101.253 (5)C13—C151.384 (7)
O7—C111.240 (5)C14—C15iv1.383 (7)
O8—C111.257 (5)C14—H140.93
O9—C131.391 (6)C15—C14iv1.383 (7)
O9—C121.413 (6)C15—H150.93
C1—C21.516 (5)O2W—H17A0.82 (3)
C2—H2A0.97O2W—H17B0.86 (3)
C2—H2B0.97
O8i—Dy1—O2i71.77 (11)O3—C2—C1113.0 (3)
O8i—Dy1—O177.10 (10)O3—C2—H2A109.0
O2i—Dy1—O1131.87 (10)C1—C2—H2A109.0
O8i—Dy1—O6ii147.73 (10)O3—C2—H2B109.0
O2i—Dy1—O6ii137.92 (11)C1—C2—H2B109.0
O1—Dy1—O6ii72.10 (10)H2A—C2—H2B107.8
O8i—Dy1—O5iii81.77 (11)O3—C3—C5116.9 (3)
O2i—Dy1—O5iii73.24 (10)O3—C3—C5116.9 (3)
O1—Dy1—O5iii136.95 (11)O3—C3—C4123.6 (3)
O6ii—Dy1—O5iii114.92 (10)O3—C3—C4123.6 (3)
O8i—Dy1—O1W87.26 (14)C5—C3—C4119.5 (3)
O2i—Dy1—O1W139.73 (12)C3—C4—C6119.7 (4)
O1—Dy1—O1W71.98 (11)C3—C4—H4120.1
O6ii—Dy1—O1W74.39 (14)C6—C4—H4120.1
O5iii—Dy1—O1W69.93 (11)C3—C5—C7120.5 (4)
O8i—Dy1—O7120.17 (11)C3—C5—H5119.7
O2i—Dy1—O773.43 (11)C7—C5—H5119.7
O1—Dy1—O792.54 (11)C8—C6—C4120.4 (4)
O6ii—Dy1—O771.26 (11)C8—C6—H6119.8
O5iii—Dy1—O7130.44 (10)C4—C6—H6119.8
O1W—Dy1—O7145.27 (13)C8—C7—C5119.0 (4)
O8i—Dy1—O4ii148.49 (9)C8—C7—H7120.5
O2i—Dy1—O4ii86.51 (9)C5—C7—H7120.5
O1—Dy1—O4ii133.60 (9)C6—C8—C7120.8 (3)
O6ii—Dy1—O4ii61.51 (9)C6—C8—O4117.0 (3)
O5iii—Dy1—O4ii70.01 (10)C7—C8—O4122.2 (3)
O1W—Dy1—O4ii95.66 (12)O4—C9—C10107.5 (3)
O7—Dy1—O4ii72.37 (10)O4—C9—H9A110.2
O8i—Dy1—O873.76 (13)C10—C9—H9A110.2
O2i—Dy1—O866.07 (10)O4—C9—H9B110.2
O1—Dy1—O870.55 (10)C10—C9—H9B110.2
O6ii—Dy1—O8104.10 (10)H9A—C9—H9B108.5
O5iii—Dy1—O8137.24 (9)O5—C10—O6125.5 (3)
O1W—Dy1—O8140.83 (11)O5—C10—C9116.8 (3)
O7—Dy1—O847.87 (9)O6—C10—C9117.8 (3)
O4ii—Dy1—O8118.45 (9)O7—C11—O8121.3 (4)
C1—O1—Dy1132.4 (2)O7—C11—C12120.6 (4)
Dy1—O1W—H16A101 (5)O8—C11—C12118.0 (4)
Dy1—O1W—H16B121 (5)O9—C12—C11113.7 (4)
H16A—O1W—H16B108 (4)O9—C12—H12A108.8
C1—O2—Dy1i145.7 (3)C11—C12—H12A108.8
C3—O3—C2115.4 (3)O9—C12—H12B108.8
C8—O4—C9115.7 (3)C11—C12—H12B108.8
C8—O4—Dy1v127.1 (2)H12A—C12—H12B107.7
C9—O4—Dy1v116.5 (2)C14—C13—C15119.3 (5)
C10—O5—Dy1vi137.2 (3)C14—C13—O9115.6 (4)
C10—O6—Dy1v128.9 (2)C15—C13—O9125.0 (5)
C11—O7—Dy1104.3 (3)C13—C14—C15iv120.6 (4)
C11—O8—Dy1i160.3 (3)C13—C14—H14119.7
C11—O8—Dy186.5 (3)C15iv—C14—H14119.7
Dy1i—O8—Dy1106.24 (12)C14iv—C15—C13120.0 (5)
C13—O9—C12118.0 (4)C14iv—C15—H15120.0
O1—C1—O2127.4 (3)C13—C15—H15120.0
O1—C1—C2120.3 (3)H17A—O2W—H17B108 (4)
O2—C1—C2112.2 (3)
O8i—Dy1—O1—C1−35.1 (4)C2—O3—C3—C5172.1 (4)
O2i—Dy1—O1—C115.4 (4)O3—O3—C3—C40.0 (3)
O6ii—Dy1—O1—C1154.7 (4)C2—O3—C3—C4−7.1 (6)
O5iii—Dy1—O1—C1−97.7 (4)O3—C3—C4—C6178.5 (4)
O1W—Dy1—O1—C1−126.4 (4)O3—C3—C4—C6178.5 (4)
O7—Dy1—O1—C185.3 (4)C5—C3—C4—C6−0.6 (6)
O4ii—Dy1—O1—C1153.2 (3)O3—C3—C5—C7−178.1 (4)
O8—Dy1—O1—C142.0 (4)O3—C3—C5—C7−178.1 (4)
O8i—Dy1—O7—C1114.8 (3)C4—C3—C5—C71.1 (7)
O2i—Dy1—O7—C1171.4 (3)C3—C4—C6—C8−0.9 (6)
O1—Dy1—O7—C11−61.7 (3)C3—C5—C7—C80.1 (7)
O6ii—Dy1—O7—C11−131.9 (3)C4—C6—C8—C72.1 (6)
O5iii—Dy1—O7—C11121.0 (3)C4—C6—C8—O4−176.8 (4)
O1W—Dy1—O7—C11−123.1 (3)C5—C7—C8—C6−1.6 (6)
O4ii—Dy1—O7—C11163.0 (3)C5—C7—C8—O4177.2 (4)
O8—Dy1—O7—C11−1.0 (2)C9—O4—C8—C6−139.9 (4)
O8i—Dy1—O8—C11−164.8 (3)Dy1v—O4—C8—C649.9 (5)
O2i—Dy1—O8—C11−87.9 (2)C9—O4—C8—C741.2 (5)
O1—Dy1—O8—C11113.5 (3)Dy1v—O4—C8—C7−129.0 (3)
O6ii—Dy1—O8—C1148.6 (2)C8—O4—C9—C10158.0 (3)
O5iii—Dy1—O8—C11−107.1 (3)Dy1v—O4—C9—C10−30.8 (4)
O1W—Dy1—O8—C11131.1 (3)Dy1vi—O5—C10—O6−34.7 (7)
O7—Dy1—O8—C111.0 (2)Dy1vi—O5—C10—C9146.8 (3)
O4ii—Dy1—O8—C11−16.3 (3)Dy1v—O6—C10—O5−177.4 (3)
O8i—Dy1—O8—Dy1i0.0Dy1v—O6—C10—C91.1 (6)
O2i—Dy1—O8—Dy1i76.87 (12)O4—C9—C10—O5−160.8 (3)
O1—Dy1—O8—Dy1i−81.74 (12)O4—C9—C10—O620.5 (5)
O6ii—Dy1—O8—Dy1i−146.60 (11)Dy1—O7—C11—O82.0 (5)
O5iii—Dy1—O8—Dy1i57.68 (18)Dy1—O7—C11—C12177.9 (3)
O1W—Dy1—O8—Dy1i−64.1 (2)Dy1i—O8—C11—O7−133.2 (8)
O7—Dy1—O8—Dy1i165.76 (18)Dy1—O8—C11—O7−1.7 (4)
O4ii—Dy1—O8—Dy1i148.44 (9)Dy1i—O8—C11—C1250.8 (10)
Dy1—O1—C1—O2−0.9 (7)Dy1—O8—C11—C12−177.7 (4)
Dy1—O1—C1—C2−179.0 (3)C13—O9—C12—C1168.3 (6)
Dy1i—O2—C1—O1−18.9 (8)O7—C11—C12—O918.6 (6)
Dy1i—O2—C1—C2159.4 (4)O8—C11—C12—O9−165.4 (4)
O3—O3—C2—C10.00 (8)C12—O9—C13—C14−172.0 (4)
C3—O3—C2—C1−174.5 (4)C12—O9—C13—C159.4 (7)
O1—C1—C2—O3−27.4 (6)C15—C13—C14—C15iv0.4 (8)
O2—C1—C2—O3154.2 (4)O9—C13—C14—C15iv−178.4 (4)
C2—O3—C3—O30(43)C14—C13—C15—C14iv−0.4 (8)
O3—O3—C3—C50.00 (12)O9—C13—C15—C14iv178.3 (4)

Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z+1; (iii) x+1, −y+1/2, z+3/2; (iv) −x+1, −y, −z; (v) x−1, y, z−1; (vi) x−1, −y+1/2, z−3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H16A···O6iii0.80 (3)2.11 (5)2.706 (4)131 (6)
O1W—H16B···O2W0.79 (3)1.98 (4)2.755 (6)166 (7)
O2W—H17A···O30.82 (3)2.41 (6)2.952 (5)125 (5)

Symmetry codes: (iii) x+1, −y+1/2, z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2601).

References

  • Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [PubMed]
  • Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  • Li, X.-F. & Han, Z.-B. (2006). Acta Cryst. E62, m1961–m1963.
  • Michl, J. (1995). Modular Chemistry. Dordrecht: Kluwer Academic Publishers.
  • Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography