PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m914–m915.
Published online 2008 June 13. doi:  10.1107/S1600536808017273
PMCID: PMC2961873

Bis[4,5-dimethyl-2-(2-pyrid­yl)-1H-imidazole-κ2 N 2,N 3](1H-imidazole-κN 3)copper(II) bis­(perchlorate)

Abstract

In the title complex, [Cu(C3H4N2)(C10H11N3)2](ClO4)2, the CuII cation has a distorted trigonal-bipyramidal geometry defined by a CuN2N′2N′′ donor set. The imidazole ligand is disordered over two orientations of equal occupancy. Two of the perchlorate ion sites are located on a twofold rotation axis, and one of is disordered over two sites of equal occupancy. In the crystal structure there is a two-dimensional infinite network of hydrogen-bonded mol­ecules parallel to the ab plane.

Related literature

For related literature, see: Holm et al. (1996 [triangle]); Huang et al. (2004 [triangle]); Huang et al. (2005 [triangle]); Kapinos et al. (1998 [triangle]); Matthews et al. (1998 [triangle]); Tan et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m914-scheme1.jpg

Experimental

Crystal data

  • [Cu(C3H4N2)(C10H11N3)2](ClO4)2
  • M r = 676.96
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0m914-efi1.jpg
  • a = 14.6374 (5) Å
  • c = 27.3945 (14) Å
  • V = 5869.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.99 mm−1
  • T = 293 (2) K
  • 0.32 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.74, T max = 0.79
  • 32170 measured reflections
  • 5775 independent reflections
  • 5315 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.117
  • S = 1.08
  • 5775 reflections
  • 410 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.64 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2433 Friedel pairs
  • Flack parameter: 0.013 (17)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017273/kj2084sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017273/kj2084Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for the support provided by the National Natural Science Foundation of China (30570518), the Science Foundation of the Health Department of Jiangsu Province (H200401) and the High Technology Research and Development Program of Jiangsu Province (BG2007603).

supplementary crystallographic information

Comment

Imidazole is ubiquitous in biology and chemistry. It is therefore of interest to synthesize ligands containing imidazole and related heterocyclic system (Tan et al., 1997; Kapinos et al., 1998; Matthews et al., 1998). Imidazole and its derivatives are an important class of heterocycle with N-donor atoms, therefore the investigation of mixed-ligand complexes of a variety of transitional metal ions with imidazole and its derivatives has attracted considerable interest in recent years. The copper-imidazole systems have demonstrated capacities for construction of inorganic-organic hybrid supramolecular isomers (Huang et al., 2004; Huang et al., 2005), and also have profound effects on functions in biological systems (Holm et al., 1996). We report here the crystal structure of the title compound, a mixed-ligand CuII complex.

The crystal structure of the title compound contains distorted CuII complexes in which individual Cu centres exist in a CuN2N'2N'' donor set that defines a distorted trigonal bipyramid geometry. The two N atoms of pyridyl rings and the N atom of imidazole coordinate in a plane around the Cu atom. The N atoms of the two imidazole rings distribute in the axial positions; the Cu1—N2 distance is 1.990 (3) Å. The imidazole ligand is not a ordered system, and the imidazole ring is disordered over two orientations. Two of the perchlorate ion sites (containing Cl1 and Cl2) are located on a twofold rotation axis, and one of these (containing Cl1) displays disorder.

The N3 atom of 4,5-dimethyl-2-(2-pyridyl)imidazole form two hydrogen bonds with the O atom of perchlorate. The N6 atom and N8 atom also each form a hydrogen bond with the O atom of perchlorate; details are presented in Table 2. A two-dimensional infinite network of hydrogen-bonded molecules is present in the structure, running parallel to the ab-plane.

Experimental

The title complex was synthesized by the reaction of 4,5-dimethyl-2- (2-pyridyl)imidazole (0.52 g, 3.0 mmol) and imidazole (0.10 g, 1.5 mmol) with copper(II) perchlorate (0.50 g, 1.5 mmol) dissolved in the methanol (20 ml). Single crystals of (I) suitable for X-ray diffraction were obtained by evaporation of the methanol solution at room temperature.

Refinement

All H atoms were allowed to ride on their parent atoms at distances of 0.96Å (methyl H), 0.93Å (pyridyl H), 0.93Å (imidazole H) and 0.86Å (N—H imidazole), and with Uiso(H) values of 1.2–1.5 times Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of the complex in (I), showing the atomic labelling. Displacement ellipsoids are shown at the 50% probability level. H atoms, counter ions and one disorder component have been omitted for clarity.

Crystal data

[Cu(C3H4N2)(C10H11N3)2](ClO4)2Z = 8
Mr = 676.96F000 = 2776
Tetragonal, P41212Dx = 1.532 Mg m3
Hall symbol: P 4abw 2nwMo Kα radiation λ = 0.71073 Å
a = 14.6374 (5) ÅCell parameters from 8320 reflections
b = 14.6374 (5) Åθ = 2.5–23.8º
c = 27.3945 (14) ŵ = 0.99 mm1
α = 90ºT = 293 (2) K
β = 90ºBipyramid, green
γ = 90º0.32 × 0.26 × 0.24 mm
V = 5869.4 (4) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer5775 independent reflections
Radiation source: sealed tube5315 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
T = 273(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −18→14
Tmin = 0.74, Tmax = 0.79k = −18→18
32170 measured reflectionsl = −33→27

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048  w = 1/[σ2(Fo2) + (0.049P)2 + 5.1204P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.54 e Å3
5775 reflectionsΔρmin = −0.63 e Å3
410 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2433 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.013 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.49074 (3)0.81891 (3)0.002420 (17)0.04289 (13)
C10.5381 (3)0.7035 (3)−0.09104 (15)0.0491 (10)
H1A0.56980.7544−0.10230.059*
C20.5351 (3)0.6266 (3)−0.12011 (16)0.0560 (11)
H2A0.56490.6258−0.15010.067*
C30.4875 (3)0.5508 (3)−0.10421 (17)0.0590 (12)
H3B0.48480.4985−0.12340.071*
C40.4438 (3)0.5534 (3)−0.05947 (17)0.0547 (10)
H4A0.41040.5037−0.04820.066*
C50.4516 (3)0.6338 (3)−0.03163 (14)0.0406 (8)
C60.4098 (3)0.6474 (3)0.01525 (14)0.0434 (9)
C70.3344 (3)0.6321 (3)0.08455 (16)0.0555 (11)
C80.3702 (3)0.7184 (3)0.08219 (16)0.0531 (11)
C90.2772 (4)0.5869 (4)0.1227 (2)0.0822 (17)
H9A0.26380.52540.11280.123*
H9B0.22130.62020.12670.123*
H9C0.30990.58590.15310.123*
C100.3611 (5)0.7958 (5)0.1173 (2)0.0863 (19)
H10A0.32580.77640.14500.129*
H10B0.33090.84600.10160.129*
H10C0.42060.81470.12800.129*
C110.6139 (3)0.7685 (3)0.09316 (16)0.0532 (11)
H11A0.56410.73590.10510.064*
C120.6937 (3)0.7703 (3)0.12029 (17)0.0557 (11)
H12A0.69760.73940.14990.067*
C130.7668 (3)0.8185 (3)0.10272 (17)0.0579 (12)
H13A0.82090.82100.12050.070*
C140.7602 (3)0.8632 (3)0.05894 (17)0.0551 (11)
H14A0.80980.89500.04620.066*
C150.6777 (3)0.8597 (2)0.03390 (15)0.0412 (8)
C160.6608 (2)0.9028 (2)−0.01296 (14)0.0383 (8)
C170.6694 (3)0.9807 (3)−0.08144 (15)0.0502 (9)
C180.5849 (3)0.9440 (3)−0.07755 (15)0.0479 (10)
C190.7111 (4)1.0404 (4)−0.1201 (2)0.0766 (16)
H19A0.66711.0515−0.14540.115*
H19B0.76361.0104−0.13380.115*
H19C0.72941.0975−0.10590.115*
C200.5027 (4)0.9551 (4)−0.1099 (2)0.0757 (16)
H20A0.51890.9907−0.13800.114*
H20B0.45500.9856−0.09210.114*
H20C0.48150.8961−0.12010.114*
C210.4109 (4)1.0078 (3)0.0069 (2)0.0658 (13)0.50
H21A0.46791.03570.00900.079*0.50
C220.2631 (3)0.9850 (4)0.0016 (2)0.075 (5)0.50
H22A0.20040.9950−0.00010.090*0.50
N80.3313 (4)1.0509 (4)0.00487 (19)0.069 (3)0.50
H8A0.32331.10910.00550.083*0.50
C230.3044 (3)0.9069 (5)0.0015 (2)0.0707 (14)0.50
H23A0.27510.8507−0.00100.085*0.50
N70.3958 (2)0.9177 (2)0.00537 (13)0.0492 (8)0.50
C23'0.4109 (4)1.0078 (3)0.0069 (2)0.0658 (13)0.50
H21B0.46791.03570.00900.079*0.50
N8'0.2631 (3)0.9850 (4)0.0016 (2)0.075 (3)0.50
H8'A0.20510.99420.00000.090*0.50
N7'0.3958 (2)0.9177 (2)0.00537 (13)0.0492 (8)0.50
C21'0.3044 (3)0.9069 (5)0.0015 (2)0.0707 (14)0.50
H23B0.27510.8507−0.00100.085*0.50
C22'0.3313 (4)1.0509 (4)0.00487 (19)0.069 (3)0.50
H22B0.32261.11380.00550.083*0.50
N10.4977 (2)0.7080 (2)−0.04776 (12)0.0412 (7)
N20.4179 (2)0.7263 (2)0.03865 (12)0.0463 (8)
N30.3601 (2)0.5891 (2)0.04254 (14)0.0514 (9)
H3A0.34680.53380.03470.062*
N40.6058 (2)0.8120 (2)0.05027 (12)0.0420 (7)
N50.5794 (2)0.8946 (2)−0.03395 (12)0.0419 (7)
N60.7161 (2)0.9535 (2)−0.04085 (13)0.0481 (8)
H60.77200.9668−0.03430.058*
Cl10.32257 (8)0.32257 (8)0.00000.0702 (5)
O110.2532 (6)0.2691 (6)−0.0184 (2)0.081 (3)0.50
O120.2849 (7)0.4105 (5)0.0068 (4)0.084 (2)0.50
O130.3603 (6)0.2882 (6)0.0403 (3)0.089 (3)0.50
O140.3877 (6)0.3325 (6)−0.0371 (3)0.080 (2)0.50
Cl20.99578 (7)0.99578 (7)0.00000.0583 (4)
O210.9987 (3)0.9145 (2)0.02515 (14)0.0775 (11)
O221.0050 (3)1.0666 (3)0.03420 (14)0.0815 (12)
Cl30.66607 (8)0.15608 (7)0.02360 (4)0.0550 (3)
O310.7316 (3)0.1668 (3)−0.01093 (13)0.0798 (12)
O320.6524 (3)0.2387 (3)0.04837 (15)0.0804 (12)
O330.6871 (3)0.0867 (3)0.05352 (15)0.0864 (13)
O340.5931 (3)0.1353 (3)−0.00339 (17)0.0867 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0378 (2)0.0426 (3)0.0483 (2)−0.00376 (19)0.0047 (2)0.0029 (2)
C10.043 (2)0.059 (3)0.046 (2)−0.0063 (19)0.0089 (18)0.0013 (19)
C20.050 (3)0.074 (3)0.044 (2)0.003 (2)0.0059 (19)−0.011 (2)
C30.069 (3)0.054 (3)0.054 (3)0.003 (2)−0.006 (2)−0.015 (2)
C40.056 (3)0.045 (2)0.063 (3)−0.0016 (19)0.001 (2)−0.010 (2)
C50.0354 (19)0.046 (2)0.041 (2)−0.0006 (16)−0.0021 (16)−0.0004 (17)
C60.041 (2)0.046 (2)0.043 (2)−0.0021 (17)0.0036 (17)0.0039 (17)
C70.049 (2)0.063 (3)0.055 (2)−0.003 (2)0.005 (2)0.011 (2)
C80.048 (2)0.066 (3)0.046 (2)−0.006 (2)0.0104 (19)0.002 (2)
C90.084 (4)0.086 (4)0.077 (4)−0.002 (3)0.033 (3)0.025 (3)
C100.099 (5)0.092 (4)0.068 (3)−0.016 (4)0.025 (3)−0.022 (3)
C110.059 (3)0.047 (2)0.054 (3)−0.007 (2)−0.007 (2)0.014 (2)
C120.061 (3)0.049 (2)0.057 (3)−0.001 (2)−0.015 (2)0.006 (2)
C130.061 (3)0.054 (3)0.059 (3)0.007 (2)−0.023 (2)−0.004 (2)
C140.043 (2)0.057 (3)0.066 (3)−0.0044 (19)−0.005 (2)−0.006 (2)
C150.040 (2)0.0344 (18)0.049 (2)−0.0007 (16)−0.0077 (17)−0.0044 (16)
C160.0306 (18)0.0389 (19)0.045 (2)−0.0029 (15)0.0010 (15)0.0024 (16)
C170.055 (2)0.046 (2)0.050 (2)0.0019 (19)0.0063 (19)0.0026 (18)
C180.047 (2)0.049 (2)0.048 (2)0.0022 (18)0.0001 (18)0.0077 (18)
C190.065 (3)0.079 (4)0.086 (4)−0.009 (3)0.021 (3)0.025 (3)
C200.072 (3)0.095 (4)0.060 (3)0.003 (3)−0.010 (3)0.025 (3)
C210.083 (4)0.044 (2)0.071 (3)−0.003 (2)0.005 (3)0.005 (2)
C220.055 (9)0.089 (11)0.081 (8)0.02 (11)0.01 (11)0.02 (13)
N80.070 (7)0.068 (7)0.070 (6)0.02 (10)0.01 (9)0.02 (9)
C230.046 (3)0.095 (4)0.071 (3)−0.006 (3)0.008 (3)−0.011 (3)
N70.0397 (18)0.0479 (19)0.060 (2)0.0012 (14)−0.0002 (17)−0.0015 (17)
C23'0.083 (4)0.044 (2)0.071 (3)−0.003 (2)0.005 (3)0.005 (2)
N8'0.055 (6)0.089 (6)0.081 (3)0.02 (10)0.01 (9)0.02 (11)
N7'0.0397 (18)0.0479 (19)0.060 (2)0.0012 (14)−0.0002 (17)−0.0015 (17)
C21'0.046 (3)0.095 (4)0.071 (3)−0.006 (3)0.008 (3)−0.011 (3)
C22'0.070 (6)0.068 (6)0.070 (3)0.02 (11)0.01 (11)0.02 (10)
N10.0327 (16)0.0462 (18)0.0449 (17)−0.0019 (14)0.0006 (14)−0.0035 (14)
N20.0441 (19)0.051 (2)0.0436 (17)−0.0092 (15)0.0047 (15)−0.0012 (16)
N30.050 (2)0.0419 (18)0.062 (2)−0.0091 (15)0.0039 (17)0.0088 (17)
N40.0422 (17)0.0372 (17)0.0465 (18)−0.0048 (14)−0.0034 (14)0.0044 (14)
N50.0346 (16)0.0450 (18)0.0460 (17)−0.0004 (13)0.0029 (14)0.0051 (14)
N60.0363 (17)0.049 (2)0.059 (2)−0.0059 (14)−0.0003 (16)0.0036 (16)
Cl10.0593 (6)0.0593 (6)0.0920 (13)−0.0108 (8)−0.0109 (8)0.0109 (8)
O110.078 (6)0.075 (5)0.090 (6)−0.035 (4)0.034 (5)−0.009 (5)
O120.102 (6)0.052 (4)0.098 (6)−0.019 (4)0.015 (6)−0.027 (5)
O130.099 (6)0.096 (6)0.072 (5)−0.050 (5)−0.016 (5)0.027 (4)
O140.095 (6)0.074 (5)0.072 (5)−0.019 (5)0.031 (5)−0.014 (4)
Cl20.0531 (5)0.0531 (5)0.0686 (9)−0.0092 (6)0.0084 (6)−0.0084 (6)
O210.094 (3)0.0521 (19)0.087 (2)−0.0083 (19)−0.043 (2)0.0116 (18)
O220.093 (3)0.074 (2)0.078 (2)−0.033 (2)0.039 (2)−0.0269 (19)
Cl30.0676 (7)0.0422 (5)0.0552 (6)−0.0112 (5)−0.0081 (5)−0.0014 (4)
O310.072 (2)0.097 (3)0.070 (2)−0.031 (2)0.0292 (18)−0.037 (2)
O320.078 (2)0.064 (2)0.099 (3)0.0249 (19)−0.039 (2)−0.028 (2)
O330.085 (3)0.083 (3)0.092 (3)0.039 (2)−0.035 (2)0.013 (2)
O340.095 (3)0.065 (2)0.101 (3)−0.016 (2)−0.024 (2)−0.024 (2)

Geometric parameters (Å, °)

Cu1—N51.977 (3)C18—N51.398 (5)
Cu1—N21.990 (3)C18—C201.503 (7)
Cu1—N72.007 (3)C19—H19A0.9600
Cu1—N12.129 (3)C19—H19B0.9600
Cu1—N42.137 (3)C19—H19C0.9600
C1—N11.327 (5)C20—H20A0.9600
C1—C21.380 (6)C20—H20B0.9600
C1—H1A0.9300C20—H20C0.9600
C2—C31.380 (7)C21—N81.326 (7)
C2—H2A0.9300C21—N71.338 (6)
C3—C41.383 (7)C21—H21A0.9300
C3—H3B0.9300C22—C231.293 (8)
C4—C51.407 (6)C22—N81.392 (8)
C4—H4A0.9300C22—H22A0.9300
C5—N11.352 (5)N8—H8A0.8600
C5—C61.437 (5)C23—N71.352 (6)
C6—N21.326 (5)C23—H23A0.9300
C6—N31.347 (5)N3—H3A0.8600
C7—N31.364 (6)N6—H60.8600
C7—C81.369 (6)Cl1—O131.334 (8)
C7—C91.493 (6)Cl1—O13i1.334 (8)
C8—N21.386 (5)Cl1—O11i1.378 (7)
C8—C101.492 (7)Cl1—O111.378 (7)
C9—H9A0.9600Cl1—O14i1.401 (8)
C9—H9B0.9600Cl1—O141.401 (8)
C9—H9C0.9600Cl1—O121.413 (8)
C10—H10A0.9600Cl1—O12i1.413 (8)
C10—H10B0.9600O11—O11i1.060 (15)
C10—H10C0.9600O11—O13i1.551 (10)
C11—N41.342 (5)O12—O14i1.135 (11)
C11—C121.385 (6)O12—O13i1.486 (11)
C11—H11A0.9300O13—O12i1.486 (11)
C12—C131.369 (7)O13—O14i1.515 (13)
C12—H12A0.9300O13—O11i1.551 (10)
C13—C141.369 (6)O14—O12i1.135 (11)
C13—H13A0.9300O14—O13i1.515 (13)
C14—C151.391 (6)Cl2—O21i1.375 (3)
C14—H14A0.9300Cl2—O211.375 (3)
C15—N41.340 (5)Cl2—O221.403 (3)
C15—C161.452 (5)Cl2—O22i1.403 (3)
C16—N51.327 (5)Cl3—O341.334 (4)
C16—N61.338 (5)Cl3—O331.341 (4)
C17—C181.353 (6)Cl3—O311.356 (3)
C17—N61.365 (5)Cl3—O321.402 (4)
C17—C191.504 (6)
N5—Cu1—N2170.20 (15)C23—C22—N8106.1 (4)
N5—Cu1—N794.06 (14)C23—C22—H22A127.0
N2—Cu1—N795.74 (15)N8—C22—H22A127.0
N5—Cu1—N194.06 (13)C21—N8—C22107.7 (5)
N2—Cu1—N180.10 (13)C21—N8—H8A126.2
N7—Cu1—N1127.46 (14)C22—N8—H8A126.2
N5—Cu1—N479.52 (13)C22—C23—N7111.1 (5)
N2—Cu1—N494.82 (13)C22—C23—H23A124.4
N7—Cu1—N4123.73 (14)N7—C23—H23A124.4
N1—Cu1—N4108.79 (13)C21—N7—C23106.3 (4)
N1—C1—C2122.9 (4)C21—N7—Cu1126.7 (3)
N1—C1—H1A118.6C23—N7—Cu1126.7 (4)
C2—C1—H1A118.6C1—N1—C5118.3 (3)
C1—C2—C3119.3 (4)C1—N1—Cu1129.5 (3)
C1—C2—H2A120.4C5—N1—Cu1112.2 (2)
C3—C2—H2A120.4C6—N2—C8107.4 (3)
C2—C3—C4119.4 (4)C6—N2—Cu1113.6 (3)
C2—C3—H3B120.3C8—N2—Cu1139.0 (3)
C4—C3—H3B120.3C6—N3—C7109.0 (4)
C3—C4—C5117.8 (4)C6—N3—H3A125.5
C3—C4—H4A121.1C7—N3—H3A125.5
C5—C4—H4A121.1C15—N4—C11118.1 (4)
N1—C5—C4122.4 (4)C15—N4—Cu1112.9 (3)
N1—C5—C6113.2 (3)C11—N4—Cu1129.0 (3)
C4—C5—C6124.4 (4)C16—N5—C18105.8 (3)
N2—C6—N3109.3 (4)C16—N5—Cu1114.9 (3)
N2—C6—C5120.9 (4)C18—N5—Cu1139.2 (3)
N3—C6—C5129.7 (4)C16—N6—C17108.8 (3)
N3—C7—C8106.2 (4)C16—N6—H6125.6
N3—C7—C9122.7 (4)C17—N6—H6125.6
C8—C7—C9131.0 (5)O13—Cl1—O13i177.0 (6)
C7—C8—N2108.1 (4)O13—Cl1—O11i69.8 (5)
C7—C8—C10129.4 (4)O13i—Cl1—O11i113.2 (5)
N2—C8—C10122.5 (4)O13—Cl1—O11113.2 (5)
C7—C9—H9A109.5O13i—Cl1—O1169.8 (5)
C7—C9—H9B109.5O11i—Cl1—O1145.3 (6)
H9A—C9—H9B109.5O13—Cl1—O14i67.2 (6)
C7—C9—H9C109.5O13i—Cl1—O14i111.0 (6)
H9A—C9—H9C109.5O11i—Cl1—O14i107.1 (5)
H9B—C9—H9C109.5O11—Cl1—O14i136.7 (5)
C8—C10—H10A109.5O13—Cl1—O14111.0 (6)
C8—C10—H10B109.5O13i—Cl1—O1467.2 (6)
H10A—C10—H10B109.5O11i—Cl1—O14136.7 (5)
C8—C10—H10C109.5O11—Cl1—O14107.1 (5)
H10A—C10—H10C109.5O14i—Cl1—O14112.7 (7)
H10B—C10—H10C109.5O13—Cl1—O12113.4 (6)
N4—C11—C12122.3 (4)O13i—Cl1—O1265.4 (6)
N4—C11—H11A118.8O11i—Cl1—O12113.7 (6)
C12—C11—H11A118.8O11—Cl1—O12106.2 (6)
C13—C12—C11118.7 (4)O14i—Cl1—O1247.6 (5)
C13—C12—H12A120.6O14—Cl1—O12105.5 (5)
C11—C12—H12A120.6O13—Cl1—O12i65.4 (6)
C12—C13—C14119.9 (4)O13i—Cl1—O12i113.4 (6)
C12—C13—H13A120.0O11i—Cl1—O12i106.2 (6)
C14—C13—H13A120.0O11—Cl1—O12i113.7 (6)
C13—C14—C15118.4 (4)O14i—Cl1—O12i105.5 (5)
C13—C14—H14A120.8O14—Cl1—O12i47.6 (5)
C15—C14—H14A120.8O12—Cl1—O12i136.7 (7)
N4—C15—C14122.4 (4)O11i—O11—Cl167.4 (3)
N4—C15—C16112.9 (3)O11i—O11—O13i119.0 (5)
C14—C15—C16124.6 (4)Cl1—O11—O13i53.8 (4)
N5—C16—N6110.2 (3)O14i—O12—Cl165.7 (6)
N5—C16—C15119.8 (3)O14i—O12—O13i118.1 (9)
N6—C16—C15130.0 (4)Cl1—O12—O13i54.7 (4)
C18—C17—N6106.2 (4)Cl1—O13—O12i59.8 (5)
C18—C17—C19131.2 (4)Cl1—O13—O14i58.5 (5)
N6—C17—C19122.6 (4)O12i—O13—O14i96.5 (6)
C17—C18—N5108.9 (4)Cl1—O13—O11i56.4 (4)
C17—C18—C20130.0 (4)O12i—O13—O11i94.5 (6)
N5—C18—C20120.9 (4)O14i—O13—O11i93.6 (7)
C17—C19—H19A109.5O12i—O14—Cl166.7 (6)
C17—C19—H19B109.5O12i—O14—O13i119.4 (8)
H19A—C19—H19B109.5Cl1—O14—O13i54.3 (4)
C17—C19—H19C109.5O21i—Cl2—O21107.7 (3)
H19A—C19—H19C109.5O21i—Cl2—O22113.3 (3)
H19B—C19—H19C109.5O21—Cl2—O22107.5 (2)
C18—C20—H20A109.5O21i—Cl2—O22i107.5 (2)
C18—C20—H20B109.5O21—Cl2—O22i113.3 (3)
H20A—C20—H20B109.5O22—Cl2—O22i107.7 (3)
C18—C20—H20C109.5O34—Cl3—O33110.5 (3)
H20A—C20—H20C109.5O34—Cl3—O31101.9 (3)
H20B—C20—H20C109.5O33—Cl3—O31110.6 (3)
N8—C21—N7108.8 (5)O34—Cl3—O32110.5 (2)
N8—C21—H21A125.6O33—Cl3—O32113.0 (3)
N7—C21—H21A125.6O31—Cl3—O32109.8 (3)

Symmetry codes: (i) y, x, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O120.862.163.001 (8)166
N3—H3A···O14i0.862.152.980 (10)162
N6—H6···O21i0.862.153.009 (5)175

Symmetry codes: (i) y, x, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2084).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Holm, R. H., Kennepohl, P. & Solomon, E. I. (1996). Chem. Rev.96, 2239–2314. [PubMed]
  • Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc.126, 13218–13219. [PubMed]
  • Huang, X.-C., Zhang, J.-P., Lin, Y.-Y. & Chen, X.-M. (2005). Chem. Commun. pp. 2232–2234. [PubMed]
  • Kapinos, L. E., Song, B. & Sigel, H. (1998). Inorg. Chim. Acta, 280, 50–56.
  • Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C., Hull, M. N. S. & Lockhart, J. C. (1998). Inorg. Chem.37, 199–207.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Tan, X.-S., Sun, J., Hu, C.-H., Fu, D.-G., Xiang, D.-F., Zheng, P.-J. & Tang, W.-X. (1997). Inorg. Chim. Acta, 257, 203–210.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography