PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m940.
Published online 2008 June 19. doi:  10.1107/S1600536808017996
PMCID: PMC2961865

Tetracarbon­ylbis(η5-cyclo­penta­dien­yl)bis(diphenyl­phosphine)dimolybdenum(MoMo) hexane solvate

Abstract

The title compound, [Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14, is a centrosymmetric Mo complex in which two Mo atoms are connected by an Mo—Mo bond [3.2072 (12) Å]. Each Mo atom is coordinated by an η5-cyclo­penta­dienyl ligand, two carbonyl ligands and a diphenyl­phosphine ligand in a piano-stool fashion.

Related literature

For related literature, see: Adams et al. (1997 [triangle]); Chen et al. (2004 [triangle]); Daglen et al. (2007 [triangle]); Shultz et al. (2008 [triangle]); Tenhaeff & Tyler (1991 [triangle]); Tyler (2003 [triangle]); Van der Sluis & Spek (1990 [triangle]); Wilson & Shoemaker (1957 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m940-scheme1.jpg

Experimental

Crystal data

  • [Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14
  • M r = 892.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m940-efi1.jpg
  • a = 8.6261 (18) Å
  • b = 9.2910 (19) Å
  • c = 13.697 (3) Å
  • α = 81.893 (4)°
  • β = 71.985 (4)°
  • γ = 73.896 (4)°
  • V = 1001.1 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.75 mm−1
  • T = 173 (2) K
  • 0.15 × 0.07 × 0.01 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995 [triangle]) T min = 0.896, T max = 0.993
  • 11167 measured reflections
  • 4330 independent reflections
  • 2766 reflections with I > 2σ(I)
  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.152
  • S = 0.95
  • 4330 reflections
  • 212 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.06 e Å−3
  • Δρmin = −1.09 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017996/hg2402sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017996/hg2402Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the NSF for funding.

supplementary crystallographic information

Comment

We previously reported the synthesis of photodegradable polymers that contain metal-metal bonds along the main chain (Tenhaeff & Tyler, 1991; Tyler, 2003). The metal-metal bond provides a convenient spectroscopic handle for monitoring the effect of external parameters as tensile stress (Chen et al., 2004) and temperature (Daglen et al., 2007) on the rate and onset of polymer backbone degradation. Recent work describes the preparation of phosphine-substituted dimeric molydenum complexes as precursors for step polymerization (Shultz et al., 2008). The title complex [MoCp(CO)2(PPh2H)]2(hexane) was obtained in our attempts to prepare the [MoCp(CO)2(Ph2P(CH2)3C[equivalent]CH)]2 complex for polymerization. Attempts to grow single crystals of the last complex were unsuccessful and instead yielded crystals of the [MoCp(CO)2(PPh2H)]2(hexane). The synthesis of the [MoCp(CO)2(PPh2H)]2 was previously reported (Adams et al., 1997), but the crystal structure has not been determined.

The compound [Mo(CO)25-C5H5)PHPh2]2(C6H14) is a centrosymmetric Mo complex in which two Mo atoms are connected by a Mo—Mo bond. Each Mo atom is coordinated to an η5-cyclopentdienyl ligand, two carbonyl ligands, and a diphenylphosphine ligand in a piano-stool fashion (Fig. 1). The Mo—Mo bond length of 3.2072 (12) Å found in [Mo(CO)25-C5H5)PHPh2]2 is within the range of single Mo—Mo bond lengths found in other related dimeric molybdenum complexes such as [MoCp(CO)2]2 (Wilson & Shoemaker, 1957) and [MoCp(CO)2(Ph2P(CH2)6CH═CH2)]2 (Shultz et al., 2008). The solvent hexane molecule in the crystal structure is disordered around an inversion center.

Experimental

The synthesis of [Mo(CO)25-C5H5)PHPh2]2 was carried out by reaction of [CpMo(CO)2]2 with 2 equivalents of phosphine ligand Ph2P(CH2)3C[equivalent]CH, which contained a small amount of Ph2PH, in a diglyme solution at room temperature. Crystals suitable for X-ray analysis were grown by slow cooling in a diglyme/hexanes solution. Although [MoCp(CO)2Ph2P(CH2)3CHδb CH2]2 was the primary product of the reaction, only crystals of [Mo(CO)25-C5H5)PHPh2]2(C6H14) were obtained.

Refinement

The structure was solved using direct methods and refined with anisotropic thermal parameters for non-H atoms. Position of the H atom coordinated to the P atom was found from the residual density and this H atom was refined with isotropic thermal parameters. Other H atoms were positioned geometrically and refined in a rigid group model, C—H = 1.00 Å (Cp-ring) and 0.95 Å (Ph-rings); Uiso(H) = 1.2Ueq(C).

A highly disordered solvent molecule, most probably C6H14, was found to be present in crystal nearby an inversion center; however our attempts to locate the individual atoms were unsuccessful. Therefore, in order to take into account the contribution of the disordered solvent we applied, the solvent was treated by SQUEEZE technique (Van der Sluis & Spek, 1990). Correction of the X-ray data by SQUEEZE (56 electrons/cell) was close to the required value for one C6H14 molecule per the full unit cell (50 electrons/cell).

Figures

Fig. 1.
The structure of [Mo(CO)2(η5-C5H5)PHPh2]2 with 50% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code (i): -x,-y,-z].

Crystal data

[Mo2(C5H5)2(C12H11P)2(CO)4]·C6H14Z = 1
Mr = 892.63F000 = 456
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.6261 (18) ÅCell parameters from 882 reflections
b = 9.2910 (19) Åθ = 2.6–17.6º
c = 13.697 (3) ŵ = 0.75 mm1
α = 81.893 (4)ºT = 173 (2) K
β = 71.985 (4)ºBlock, red
γ = 73.896 (4)º0.15 × 0.07 × 0.01 mm
V = 1001.1 (4) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer4330 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.086
T = 173(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1995)h = −10→10
Tmin = 0.896, Tmax = 0.993k = −11→11
11167 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152  w = 1/[σ2(Fo2) + (0.0637P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
4330 reflectionsΔρmax = 1.06 e Å3
212 parametersΔρmin = −1.09 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mo10.08453 (7)0.07667 (6)0.06104 (5)0.02499 (19)
P10.2686 (2)−0.04682 (18)0.16299 (13)0.0285 (4)
O1−0.1657 (6)−0.0706 (6)0.2330 (4)0.0454 (13)
O20.3623 (6)−0.1648 (5)−0.0744 (4)0.0397 (12)
C1−0.0688 (9)−0.0224 (8)0.1649 (5)0.0343 (16)
C20.2458 (8)−0.0818 (7)−0.0233 (5)0.0304 (15)
C3−0.0039 (10)0.3062 (6)−0.0307 (6)0.0365 (18)
H3A−0.06490.3205−0.08410.044*
C4−0.0793 (9)0.3252 (7)0.0762 (6)0.0415 (19)
H4A−0.20280.35700.11100.050*
C50.0493 (9)0.3080 (7)0.1222 (6)0.0372 (18)
H5A0.03350.32720.19510.045*
C60.2038 (10)0.2748 (7)0.0456 (6)0.0375 (17)
H6A0.31640.26770.05480.045*
C70.1708 (10)0.2767 (7)−0.0493 (6)0.0401 (18)
H7A0.25620.2673−0.11830.048*
C80.2740 (9)−0.2437 (7)0.2043 (5)0.0333 (16)
C90.3917 (9)−0.3568 (8)0.1447 (6)0.0393 (18)
H9A0.4724−0.33210.08420.047*
C100.3905 (11)−0.5048 (8)0.1739 (7)0.051 (2)
H10A0.4710−0.58220.13340.061*
C110.2754 (11)−0.5405 (9)0.2598 (7)0.055 (2)
H11A0.2769−0.64310.27910.066*
C120.1571 (11)−0.4323 (8)0.3193 (6)0.051 (2)
H12A0.0756−0.45800.37900.061*
C130.1593 (10)−0.2850 (8)0.2902 (5)0.0435 (19)
H13A0.0780−0.20880.33130.052*
C140.2585 (9)0.0315 (7)0.2804 (5)0.0323 (16)
C150.1047 (10)0.0952 (8)0.3460 (5)0.0408 (18)
H15A0.00410.10360.32840.049*
C160.0974 (12)0.1476 (9)0.4391 (6)0.056 (2)
H16A−0.00870.18920.48530.067*
C170.2421 (14)0.1391 (9)0.4635 (7)0.063 (3)
H17A0.23700.17520.52630.076*
C180.3954 (13)0.0778 (9)0.3962 (7)0.059 (2)
H18A0.49600.07360.41250.071*
C190.4053 (10)0.0227 (7)0.3057 (6)0.0412 (19)
H19A0.5119−0.02110.26080.049*
H10.427 (7)−0.057 (6)0.119 (4)0.017 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mo10.0325 (3)0.0102 (3)0.0349 (3)−0.0046 (2)−0.0133 (2)−0.0028 (2)
P10.0351 (10)0.0174 (9)0.0347 (10)−0.0047 (7)−0.0128 (8)−0.0041 (7)
O10.045 (3)0.049 (3)0.042 (3)−0.015 (3)−0.011 (3)0.004 (3)
O20.037 (3)0.030 (3)0.047 (3)0.000 (2)−0.010 (2)−0.011 (2)
C10.031 (4)0.030 (4)0.038 (4)0.000 (3)−0.010 (3)−0.005 (3)
C20.032 (4)0.028 (4)0.038 (4)−0.016 (3)−0.013 (3)0.002 (3)
C30.060 (5)0.004 (3)0.051 (5)−0.010 (3)−0.027 (4)0.007 (3)
C40.036 (4)0.005 (3)0.078 (6)0.002 (3)−0.014 (4)−0.008 (3)
C50.049 (5)0.011 (3)0.060 (5)−0.005 (3)−0.025 (4)−0.012 (3)
C60.048 (5)0.015 (3)0.055 (5)−0.016 (3)−0.018 (4)−0.001 (3)
C70.061 (5)0.017 (4)0.045 (5)−0.014 (3)−0.018 (4)0.005 (3)
C80.042 (4)0.022 (4)0.039 (4)−0.004 (3)−0.021 (3)−0.001 (3)
C90.034 (4)0.029 (4)0.060 (5)−0.006 (3)−0.021 (4)−0.005 (3)
C100.058 (5)0.015 (4)0.083 (6)0.006 (4)−0.037 (5)−0.010 (4)
C110.073 (6)0.026 (4)0.083 (7)−0.017 (4)−0.048 (6)0.012 (4)
C120.074 (6)0.026 (4)0.054 (5)−0.016 (4)−0.021 (5)0.007 (4)
C130.059 (5)0.036 (4)0.034 (4)−0.012 (4)−0.011 (4)0.000 (3)
C140.049 (5)0.011 (3)0.038 (4)−0.010 (3)−0.013 (3)0.002 (3)
C150.049 (5)0.033 (4)0.040 (4)−0.016 (4)−0.007 (4)−0.002 (3)
C160.088 (7)0.041 (5)0.038 (5)−0.025 (5)−0.009 (5)−0.003 (4)
C170.119 (9)0.041 (5)0.047 (5)−0.026 (5)−0.043 (6)−0.001 (4)
C180.084 (7)0.048 (5)0.061 (6)−0.015 (5)−0.046 (6)0.002 (4)
C190.061 (5)0.019 (4)0.057 (5)−0.012 (3)−0.035 (4)0.002 (3)

Geometric parameters (Å, °)

Mo1—C11.940 (8)C7—H7A1.0000
Mo1—C21.946 (7)C8—C131.369 (9)
Mo1—C62.302 (6)C8—C91.393 (9)
Mo1—C52.324 (6)C9—C101.379 (10)
Mo1—C42.349 (6)C9—H9A0.9500
Mo1—C72.360 (7)C10—C111.353 (11)
Mo1—C32.376 (6)C10—H10A0.9500
Mo1—P12.3866 (18)C11—C121.365 (11)
Mo1—Mo1i3.2072 (12)C11—H11A0.9500
P1—C141.826 (7)C12—C131.374 (10)
P1—C81.829 (7)C12—H12A0.9500
P1—H11.29 (5)C13—H13A0.9500
O1—C11.173 (8)C14—C151.376 (9)
O2—C21.176 (7)C14—C191.391 (9)
C3—C71.401 (10)C15—C161.406 (10)
C3—C41.421 (10)C15—H15A0.9500
C3—H3A1.0000C16—C171.369 (12)
C4—C51.399 (9)C16—H16A0.9500
C4—H4A1.0000C17—C181.378 (12)
C5—C61.404 (10)C17—H17A0.9500
C5—H5A1.0000C18—C191.376 (10)
C6—C71.411 (9)C18—H18A0.9500
C6—H6A1.0000C19—H19A0.9500
C1—Mo1—C2105.4 (3)Mo1—C4—H4A125.8
C1—Mo1—C6138.8 (3)C4—C5—C6108.1 (7)
C2—Mo1—C6109.0 (3)C4—C5—Mo173.5 (4)
C1—Mo1—C5106.1 (3)C6—C5—Mo171.5 (4)
C2—Mo1—C5143.9 (3)C4—C5—H5A125.8
C6—Mo1—C535.3 (2)C6—C5—H5A125.8
C1—Mo1—C499.1 (3)Mo1—C5—H5A125.8
C2—Mo1—C4150.1 (3)C5—C6—C7108.2 (7)
C6—Mo1—C458.4 (3)C5—C6—Mo173.2 (4)
C5—Mo1—C434.8 (2)C7—C6—Mo174.7 (4)
C1—Mo1—C7156.6 (3)C5—C6—H6A125.5
C2—Mo1—C795.6 (3)C7—C6—H6A125.5
C6—Mo1—C735.2 (2)Mo1—C6—H6A125.5
C5—Mo1—C758.3 (3)C3—C7—C6107.9 (7)
C4—Mo1—C757.9 (3)C3—C7—Mo173.4 (4)
C1—Mo1—C3123.8 (3)C6—C7—Mo170.1 (4)
C2—Mo1—C3115.2 (3)C3—C7—H7A126.0
C6—Mo1—C358.1 (2)C6—C7—H7A126.0
C5—Mo1—C358.1 (2)Mo1—C7—H7A126.0
C4—Mo1—C335.0 (2)C13—C8—C9117.9 (7)
C7—Mo1—C334.4 (2)C13—C8—P1122.1 (5)
C1—Mo1—P181.6 (2)C9—C8—P1120.0 (6)
C2—Mo1—P175.99 (19)C10—C9—C8119.7 (7)
C6—Mo1—P185.34 (19)C10—C9—H9A120.1
C5—Mo1—P191.73 (18)C8—C9—H9A120.1
C4—Mo1—P1125.1 (2)C11—C10—C9120.3 (8)
C7—Mo1—P1113.98 (19)C11—C10—H10A119.8
C3—Mo1—P1143.43 (17)C9—C10—H10A119.8
C1—Mo1—Mo1i73.9 (2)C10—C11—C12121.4 (7)
C2—Mo1—Mo1i67.11 (18)C10—C11—H11A119.3
C6—Mo1—Mo1i141.14 (18)C12—C11—H11A119.3
C5—Mo1—Mo1i139.46 (17)C11—C12—C13118.0 (8)
C4—Mo1—Mo1i104.62 (19)C11—C12—H12A121.0
C7—Mo1—Mo1i106.02 (18)C13—C12—H12A121.0
C3—Mo1—Mo1i87.55 (17)C8—C13—C12122.6 (7)
P1—Mo1—Mo1i127.32 (5)C8—C13—H13A118.7
C14—P1—C8102.5 (3)C12—C13—H13A118.7
C14—P1—Mo1121.2 (2)C15—C14—C19119.8 (7)
C8—P1—Mo1117.1 (2)C15—C14—P1119.8 (5)
C14—P1—H196 (2)C19—C14—P1120.3 (6)
C8—P1—H1100 (2)C14—C15—C16119.5 (7)
Mo1—P1—H1116 (2)C14—C15—H15A120.2
O1—C1—Mo1173.7 (6)C16—C15—H15A120.2
O2—C2—Mo1168.9 (5)C17—C16—C15120.5 (8)
C7—C3—C4107.8 (7)C17—C16—H16A119.8
C7—C3—Mo172.2 (4)C15—C16—H16A119.8
C4—C3—Mo171.4 (4)C16—C17—C18119.3 (8)
C7—C3—H3A126.0C16—C17—H17A120.3
C4—C3—H3A126.0C18—C17—H17A120.3
Mo1—C3—H3A126.0C19—C18—C17121.2 (8)
C5—C4—C3108.0 (7)C19—C18—H18A119.4
C5—C4—Mo171.6 (4)C17—C18—H18A119.4
C3—C4—Mo173.5 (4)C18—C19—C14119.7 (8)
C5—C4—H4A125.8C18—C19—H19A120.2
C3—C4—H4A125.8C14—C19—H19A120.2

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2402).

References

  • Adams, H., Bailey, N. A., Blenkiron, P. & Morris, M. J. (1997). J. Chem. Soc. Dalton Trans. pp. 3589–3598.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, R., Yoon, M., Smalley, A., Johnson, D. C. & Tyler, D. R. (2004). J. Am. Chem. Soc.126, 3054–3055. [PubMed]
  • Daglen, B. C., Harris, J. D. & Tyler, D. R. (2007). J. Inorg. Organomet. Polym. Mater.17, 267–274.
  • Sheldrick, G. M. (1995). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shultz, G. V., Berryman, O. B., Zakharov, L. N. & Tyler, D. R. (2008). J. Inorg. Organomet. Polym. Mater.18, 149–154.
  • Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
  • Tenhaeff, S. C. & Tyler, D. R. (1991). Organometallics, 10, 473–482.
  • Tyler, D. R. (2003). Coord. Chem. Rev.246, 1–2, 291–303.
  • Wilson, F. C. & Shoemaker, D. P. (1957). J. Chem. Phys.27, 809–810.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography