PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m916.
Published online 2008 June 13. doi:  10.1107/S1600536808017145
PMCID: PMC2961862

cis-Bis(N-benzoyl-N′,N′-dibenzyl­thio­ureato-κ2 O,S)nickel(II)

Abstract

In the title compound, [Ni(C22H19N2OS)2], the NiII atom is coordinated by the S and O atoms of two N-benzoyl-N′,N′-dibenzyl­thio­ureate ligands in a slightly distorted square-planar geometry. The two O atoms are cis, as are the two S atoms.

Related literature

For general background, see: Jia et al. (2007 [triangle]). For related structures, see: Arslan et al. (2003 [triangle]); Pérez et al. (2008 [triangle]). For the synthesis of the ligand, see: Hernández et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m916-scheme1.jpg

Experimental

Crystal data

  • [Ni(C22H19N2OS)2]
  • M r = 777.61
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m916-efi1.jpg
  • a = 5.5645 (1) Å
  • b = 19.7873 (7) Å
  • c = 33.859 (1) Å
  • V = 3728.09 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 294 K
  • 0.34 × 0.05 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: Gaussian (Coppens et al., 1965 [triangle]) T min = 0.765, T max = 0.950
  • 16007 measured reflections
  • 5260 independent reflections
  • 4302 reflections with I > 2σ(I)
  • R int = 0.123

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084
  • wR(F 2) = 0.131
  • S = 1.17
  • 5260 reflections
  • 479 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.48 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1448 Friedel pairs
  • Flack parameter: 0.02 (3)

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017145/hy2137sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017145/hy2137Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from Brazilian agencies CAPES (Project 018/05) and CNPq (Project 134576/2007–1).

supplementary crystallographic information

Comment

N-acyl-N',N'-disubstituted thioureas are well known as chelating agents. Over recent years, many transition metal complexes with N-benzoyl- and N-furoyl-N',N'-disubstituted thioureas have been reported (Jia et al., 2007). During the complex formation, the ligand is deprotonated, which results in a neutral complex with a six-membered ring chelating metal ion. In this paper, we report the crystal structure of the title compound.

In the structure, two benzoylthiourea molecules are bonded to the central NiII ion in cis positions, as shown in Fig. 1. The coordination geometry is a slightly distorted square-plane, as reflected by the angles O1—Ni1—S2 = 177.9 (2) and O2—Ni1—S1 = 179.2 (2)° (Table 1). The Ni—S and Ni—O bond lengths lie within the range of those found in the related structures (Arslan et al., 2003). The lengths of C—O, C—S and C—N bonds in the chelate ring are between characteristic single and double bond lengths (Pérez et al., 2008), which are shorter than single bond and longer than double bond. Fig. 2 shows the arrangement of the complex molecules in the unit cell.

Experimental

N-benzoyl-N',N'-dibenzylthiourea ligand was synthesized according to a procedure described by Hernández et al. (2003), by converting benzoyl chloride into benzoyl isothiocyanate and then condensing with an appropriate amine. To an ethanol solution (30 ml) containing the ligand (0.96 g, 3 mmol) was added an ethanol solution of Ni(CH3COO)2.4H2O (0.25 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a red solid, which was washed with acetone. Single crystals were obtained by slow evaporation of a chloroform/N,N-diphenylformamide solution (1:1, v/v) of the complex.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
View of the unit cell of the title compound.

Crystal data

[Ni(C22H19N2O1S1)2]F000 = 1624
Mr = 777.61Dx = 1.386 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 24585 reflections
a = 5.5645 (1) Åθ = 2.9–25.0º
b = 19.7873 (7) ŵ = 0.68 mm1
c = 33.859 (1) ÅT = 294 K
V = 3728.09 (18) Å3Needle, red
Z = 40.34 × 0.05 × 0.04 mm

Data collection

Nonius KappaCCD diffractometerRint = 0.123
[var phi] and ω scansθmax = 25.0º
Absorption correction: Gaussian(Coppens et al., 1965)θmin = 3.2º
Tmin = 0.765, Tmax = 0.950h = −6→5
16007 measured reflectionsk = −23→23
5260 independent reflectionsl = −39→40
4302 reflections with I > 2σ(I)

Refinement

Refinement on F2  w = 1/[σ2(Fo2) + 5.999P] where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.084Δρmax = 0.35 e Å3
wR(F2) = 0.131Δρmin = −0.48 e Å3
S = 1.17Extinction correction: none
5260 reflectionsAbsolute structure: Flack (1983), 1448 Friedel pairs
479 parametersFlack parameter: 0.02 (3)
H-atom parameters constrained

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.21477 (16)0.47548 (4)0.38022 (3)0.0437 (3)
S2−0.0611 (4)0.42371 (10)0.41155 (8)0.0582 (7)
S10.2840 (5)0.37861 (10)0.35445 (8)0.0694 (7)
N4−0.3836 (10)0.4556 (2)0.4654 (2)0.0395 (17)
O20.1541 (9)0.5590 (2)0.40168 (17)0.0502 (15)
N3−0.1887 (11)0.5475 (3)0.44201 (19)0.0417 (17)
N10.5878 (12)0.4449 (3)0.3040 (2)0.0445 (17)
O10.4633 (9)0.5193 (2)0.35422 (17)0.0544 (14)
C31−0.5155 (13)0.5008 (3)0.4918 (3)0.057 (2)
H31A−0.67430.48210.49630.068*
H31B−0.53560.54410.47870.068*
C24−0.2165 (13)0.4798 (4)0.4400 (2)0.0417 (18)
N20.4658 (12)0.3396 (3)0.2864 (2)0.0508 (18)
C30.7812 (14)0.5504 (4)0.3122 (2)0.046 (2)
C25−0.0194 (13)0.6554 (3)0.4309 (2)0.0383 (19)
C150.3589 (15)0.1551 (4)0.2963 (3)0.060 (2)
H150.22140.15140.28080.072*
C100.4474 (14)0.2178 (4)0.3044 (2)0.040 (2)
C90.3175 (14)0.2788 (3)0.2901 (3)0.050 (2)
H9A0.2480.26870.26440.06*
H9B0.18620.28830.30810.06*
C160.6170 (14)0.3428 (4)0.2507 (3)0.054 (2)
H16A0.70590.3010.24770.065*
H16B0.73160.37960.2530.065*
C28−0.0128 (16)0.7928 (4)0.4458 (3)0.057 (3)
H28−0.00870.83880.45140.069*
C38−0.4472 (13)0.3833 (3)0.4672 (3)0.043 (2)
H38A−0.37690.36030.44470.052*
H38B−0.62040.37870.46540.052*
C10.5936 (14)0.5015 (4)0.3256 (3)0.045 (2)
C23−0.0152 (15)0.5805 (3)0.4229 (3)0.044 (2)
C37−0.1911 (14)0.5516 (3)0.5343 (3)0.049 (2)
H37−0.13240.57320.51190.059*
C51.1304 (15)0.5778 (4)0.2741 (3)0.066 (3)
H51.24770.56480.25610.079*
C42−0.2177 (17)0.2847 (4)0.5739 (3)0.061 (2)
H42−0.16890.26280.59680.073*
C43−0.4345 (18)0.2682 (4)0.5563 (3)0.070 (3)
H43−0.53410.23570.56760.084*
C32−0.3930 (13)0.5123 (3)0.5319 (3)0.047 (2)
C40−0.1427 (13)0.3649 (4)0.5220 (3)0.044 (2)
H40−0.04040.39590.510.052*
C26−0.2030 (14)0.6860 (3)0.4520 (2)0.050 (2)
H26−0.32960.660.46160.059*
C290.1682 (15)0.7645 (4)0.4247 (3)0.057 (2)
H290.29260.79130.41510.069*
C170.4570 (15)0.3541 (4)0.2150 (3)0.053 (2)
C20.4545 (14)0.3915 (4)0.3127 (2)0.043 (2)
C27−0.1995 (15)0.7549 (4)0.4590 (2)0.051 (2)
H27−0.32510.77520.47260.061*
C120.7559 (17)0.1644 (5)0.3434 (3)0.077 (3)
H120.89150.16770.35940.092*
C35−0.1550 (17)0.5270 (4)0.6035 (3)0.068 (3)
H35−0.07550.53220.62750.081*
C300.1670 (13)0.6960 (4)0.4175 (3)0.052 (2)
H300.29280.67670.40330.063*
C33−0.4729 (15)0.4803 (4)0.5658 (3)0.057 (2)
H33−0.60990.45340.56470.068*
C39−0.3608 (12)0.3498 (3)0.5050 (2)0.0347 (19)
C210.3153 (17)0.3233 (4)0.1501 (3)0.067 (3)
H210.32590.29530.12810.08*
C36−0.0719 (16)0.5593 (4)0.5708 (3)0.058 (2)
H360.0640.58650.57250.069*
C80.7795 (16)0.6155 (4)0.3267 (3)0.064 (2)
H80.66120.62850.34450.077*
C40.9590 (14)0.5329 (4)0.2857 (3)0.053 (2)
H40.96190.48930.27550.064*
C200.1462 (16)0.3726 (5)0.1514 (3)0.070 (3)
H200.04070.37860.13040.084*
C180.2883 (17)0.4056 (4)0.2155 (3)0.070 (3)
H180.27950.43490.2370.084*
C41−0.0754 (14)0.3336 (4)0.5573 (3)0.058 (2)
H410.06730.3460.56960.07*
C44−0.5013 (13)0.3004 (4)0.5218 (3)0.048 (2)
H44−0.6450.28840.50970.058*
C61.1298 (15)0.6425 (5)0.2892 (3)0.066 (3)
H61.24950.67280.28180.079*
C190.1326 (17)0.4131 (5)0.1839 (4)0.078 (3)
H190.01570.44670.18480.094*
C130.660 (2)0.1020 (5)0.3345 (4)0.085 (3)
H130.72770.06310.3450.102*
C220.4738 (17)0.3145 (4)0.1816 (3)0.059 (3)
H220.59220.28140.18010.071*
C70.9547 (17)0.6622 (4)0.3148 (3)0.072 (3)
H70.95130.70630.32430.086*
C34−0.3522 (18)0.4875 (4)0.6014 (3)0.073 (3)
H34−0.40720.46520.62380.087*
C110.6491 (15)0.2218 (4)0.3286 (3)0.060 (3)
H110.71290.26390.33480.072*
C140.4646 (19)0.0972 (4)0.3101 (3)0.074 (3)
H140.40440.05510.30290.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0514 (6)0.0432 (5)0.0365 (6)0.0040 (5)0.0014 (5)−0.0003 (5)
S20.0683 (15)0.0418 (11)0.0645 (18)0.0003 (11)0.0191 (13)−0.0026 (11)
S10.1009 (19)0.0482 (12)0.0590 (17)0.0005 (13)0.0286 (16)−0.0022 (11)
N40.040 (4)0.028 (3)0.050 (5)−0.002 (3)0.006 (3)−0.001 (3)
O20.051 (3)0.043 (3)0.057 (4)0.003 (2)0.018 (3)0.000 (3)
N30.045 (4)0.032 (3)0.049 (5)−0.005 (3)−0.001 (4)0.000 (3)
N10.051 (4)0.049 (4)0.033 (5)−0.002 (3)0.002 (3)−0.001 (4)
O10.056 (3)0.056 (3)0.051 (4)0.001 (3)0.016 (3)−0.010 (3)
C310.044 (5)0.047 (5)0.079 (8)0.002 (4)0.017 (5)−0.001 (5)
C240.044 (4)0.044 (4)0.037 (5)−0.002 (4)−0.008 (4)−0.006 (4)
N20.064 (4)0.044 (4)0.044 (5)−0.007 (4)0.002 (4)−0.010 (4)
C30.045 (5)0.049 (5)0.044 (6)0.000 (4)−0.008 (5)−0.004 (4)
C250.039 (4)0.044 (4)0.032 (5)−0.002 (4)0.000 (4)−0.005 (4)
C150.065 (6)0.059 (6)0.057 (7)−0.002 (5)0.003 (5)−0.008 (5)
C100.039 (5)0.051 (5)0.030 (5)−0.005 (4)0.015 (4)−0.008 (4)
C90.055 (5)0.045 (4)0.049 (6)0.005 (4)−0.005 (4)0.001 (4)
C160.057 (6)0.059 (5)0.046 (6)0.005 (4)0.016 (5)−0.004 (5)
C280.073 (6)0.041 (5)0.059 (7)0.003 (5)−0.014 (5)−0.009 (5)
C380.031 (4)0.041 (4)0.057 (7)−0.011 (3)−0.004 (4)0.000 (4)
C10.044 (5)0.040 (5)0.050 (6)0.002 (4)−0.014 (5)0.010 (4)
C230.058 (6)0.033 (4)0.040 (6)−0.003 (4)−0.014 (5)−0.006 (4)
C370.051 (5)0.040 (4)0.055 (6)−0.008 (4)0.006 (5)−0.001 (4)
C50.054 (6)0.066 (6)0.078 (8)−0.001 (5)0.020 (5)−0.003 (6)
C420.073 (6)0.050 (5)0.060 (7)0.010 (5)−0.006 (6)0.010 (5)
C430.069 (7)0.050 (6)0.090 (9)−0.013 (5)0.004 (6)0.004 (6)
C320.050 (5)0.035 (4)0.056 (6)0.006 (4)0.004 (4)−0.007 (4)
C400.042 (5)0.044 (5)0.044 (6)0.001 (4)0.008 (4)−0.004 (4)
C260.053 (5)0.048 (5)0.047 (6)0.004 (4)0.001 (5)0.008 (4)
C290.064 (6)0.043 (5)0.064 (7)−0.006 (4)−0.003 (5)0.002 (4)
C170.059 (5)0.044 (5)0.055 (7)0.006 (4)0.016 (5)0.000 (5)
C20.055 (5)0.059 (5)0.016 (5)0.012 (4)0.008 (4)−0.007 (4)
C270.061 (5)0.050 (5)0.042 (6)0.001 (4)0.001 (5)−0.001 (4)
C120.069 (7)0.093 (7)0.068 (8)0.028 (7)−0.003 (6)0.006 (6)
C350.097 (7)0.054 (5)0.052 (7)−0.002 (6)0.005 (5)0.006 (5)
C300.048 (5)0.047 (5)0.062 (7)0.005 (4)−0.002 (5)0.005 (4)
C330.071 (6)0.056 (5)0.043 (6)−0.014 (5)0.024 (5)0.000 (5)
C390.035 (4)0.032 (4)0.038 (5)0.005 (3)−0.006 (4)−0.004 (4)
C210.086 (7)0.073 (6)0.041 (6)−0.003 (6)−0.010 (6)−0.011 (5)
C360.055 (5)0.055 (5)0.063 (8)−0.002 (4)−0.001 (5)−0.008 (5)
C80.063 (6)0.068 (6)0.060 (7)0.004 (5)0.006 (5)−0.005 (5)
C40.056 (5)0.059 (5)0.045 (6)0.007 (5)0.016 (4)−0.003 (5)
C200.074 (7)0.078 (6)0.058 (8)0.010 (5)−0.015 (6)0.016 (6)
C180.091 (7)0.065 (6)0.052 (7)0.019 (6)−0.007 (6)−0.007 (5)
C410.041 (5)0.070 (6)0.064 (8)0.008 (5)−0.011 (5)−0.003 (5)
C440.037 (5)0.044 (4)0.064 (7)−0.009 (4)0.003 (4)0.000 (5)
C60.064 (6)0.070 (6)0.064 (8)−0.012 (5)0.000 (5)0.006 (5)
C190.092 (8)0.067 (6)0.076 (9)0.028 (5)0.004 (7)−0.003 (6)
C130.094 (9)0.075 (7)0.085 (9)0.013 (6)0.008 (7)0.025 (6)
C220.083 (7)0.048 (5)0.047 (7)0.012 (5)0.005 (5)−0.017 (5)
C70.081 (7)0.056 (6)0.078 (9)−0.013 (5)0.011 (6)−0.016 (5)
C340.115 (8)0.066 (6)0.037 (6)−0.011 (6)0.013 (6)0.004 (5)
C110.058 (6)0.067 (6)0.055 (7)0.004 (5)0.003 (5)−0.009 (5)
C140.086 (7)0.054 (6)0.083 (9)−0.005 (6)0.001 (7)0.002 (6)

Geometric parameters (Å, °)

Ni1—O21.837 (5)C42—C411.370 (11)
Ni1—O11.855 (5)C42—C431.385 (12)
Ni1—S22.128 (2)C42—H420.93
Ni1—S12.141 (2)C43—C441.382 (12)
S2—C241.706 (7)C43—H430.93
S1—C21.722 (8)C32—C331.386 (11)
N4—C241.353 (9)C40—C391.376 (9)
N4—C311.460 (9)C40—C411.398 (11)
N4—C381.474 (7)C40—H400.93
O2—C231.259 (9)C26—C271.384 (9)
N3—C231.333 (10)C26—H260.93
N3—C241.352 (8)C29—C301.377 (10)
N1—C21.326 (9)C29—H290.93
N1—C11.338 (9)C17—C221.378 (12)
O1—C11.260 (9)C17—C181.385 (10)
C31—C321.536 (11)C27—H270.93
C31—H31A0.97C12—C111.376 (11)
C31—H31B0.97C12—C131.380 (12)
N2—C21.359 (9)C12—H120.93
N2—C91.464 (8)C35—C341.348 (11)
N2—C161.475 (10)C35—C361.359 (12)
C3—C41.378 (10)C35—H350.93
C3—C81.379 (9)C30—H300.93
C3—C11.495 (10)C33—C341.388 (12)
C25—C261.385 (10)C33—H330.93
C25—C301.389 (10)C39—C441.375 (10)
C25—C231.506 (9)C21—C201.355 (11)
C15—C101.364 (10)C21—C221.395 (12)
C15—C141.369 (11)C21—H210.93
C15—H150.93C36—H360.93
C10—C111.392 (11)C8—C71.403 (11)
C10—C91.488 (10)C8—H80.93
C9—H9A0.97C4—H40.93
C9—H9B0.97C20—C191.363 (13)
C16—C171.519 (11)C20—H200.93
C16—H16A0.97C18—C191.386 (13)
C16—H16B0.97C18—H180.93
C28—C271.356 (11)C41—H410.93
C28—C291.356 (11)C44—H440.93
C28—H280.93C6—C71.361 (12)
C38—C391.518 (10)C6—H60.93
C38—H38A0.97C19—H190.93
C38—H38B0.97C13—C141.366 (13)
C37—C321.368 (10)C13—H130.93
C37—C361.411 (12)C22—H220.93
C37—H370.93C7—H70.93
C5—C41.360 (10)C34—H340.93
C5—C61.378 (11)C11—H110.93
C5—H50.93C14—H140.93
O2—Ni1—O184.5 (2)C39—C40—C41119.9 (7)
O2—Ni1—S295.94 (17)C39—C40—H40120.1
O1—Ni1—S2177.9 (2)C41—C40—H40120.1
O2—Ni1—S1179.2 (2)C27—C26—C25120.5 (7)
O1—Ni1—S195.23 (18)C27—C26—H26119.7
S2—Ni1—S184.38 (9)C25—C26—H26119.7
C24—S2—Ni1109.5 (3)C28—C29—C30119.7 (8)
C2—S1—Ni1107.6 (3)C28—C29—H29120.1
C24—N4—C31121.1 (6)C30—C29—H29120.1
C24—N4—C38122.3 (6)C22—C17—C18118.5 (9)
C31—N4—C38116.6 (6)C22—C17—C16121.9 (8)
C23—O2—Ni1131.9 (5)C18—C17—C16119.6 (8)
C23—N3—C24123.0 (7)N1—C2—N2115.5 (7)
C2—N1—C1124.0 (7)N1—C2—S1127.5 (6)
C1—O1—Ni1131.5 (5)N2—C2—S1116.8 (6)
N4—C31—C32114.1 (6)C28—C27—C26120.0 (8)
N4—C31—H31A108.7C28—C27—H27120
C32—C31—H31A108.7C26—C27—H27120
N4—C31—H31B108.7C11—C12—C13119.4 (10)
C32—C31—H31B108.7C11—C12—H12120.3
H31A—C31—H31B107.6C13—C12—H12120.3
N3—C24—N4113.5 (6)C34—C35—C36120.4 (10)
N3—C24—S2127.9 (6)C34—C35—H35119.8
N4—C24—S2118.5 (5)C36—C35—H35119.8
C2—N2—C9122.6 (7)C29—C30—C25121.0 (8)
C2—N2—C16122.0 (7)C29—C30—H30119.5
C9—N2—C16115.2 (6)C25—C30—H30119.5
C4—C3—C8118.1 (8)C32—C33—C34121.2 (8)
C4—C3—C1122.5 (7)C32—C33—H33119.4
C8—C3—C1119.4 (8)C34—C33—H33119.4
C26—C25—C30117.8 (7)C44—C39—C40118.8 (8)
C26—C25—C23122.3 (7)C44—C39—C38118.7 (7)
C30—C25—C23119.9 (7)C40—C39—C38122.4 (7)
C10—C15—C14122.5 (9)C20—C21—C22120.3 (9)
C10—C15—H15118.7C20—C21—H21119.8
C14—C15—H15118.7C22—C21—H21119.8
C15—C10—C11117.4 (8)C35—C36—C37120.2 (8)
C15—C10—C9119.9 (8)C35—C36—H36119.9
C11—C10—C9122.6 (7)C37—C36—H36119.9
N2—C9—C10114.8 (6)C3—C8—C7120.6 (8)
N2—C9—H9A108.6C3—C8—H8119.7
C10—C9—H9A108.6C7—C8—H8119.7
N2—C9—H9B108.6C5—C4—C3121.8 (8)
C10—C9—H9B108.6C5—C4—H4119.1
H9A—C9—H9B107.5C3—C4—H4119.1
N2—C16—C17109.0 (7)C21—C20—C19119.1 (9)
N2—C16—H16A109.9C21—C20—H20120.4
C17—C16—H16A109.9C19—C20—H20120.4
N2—C16—H16B109.9C17—C18—C19119.4 (9)
C17—C16—H16B109.9C17—C18—H18120.3
H16A—C16—H16B108.3C19—C18—H18120.3
C27—C28—C29120.9 (7)C42—C41—C40120.6 (8)
C27—C28—H28119.5C42—C41—H41119.7
C29—C28—H28119.5C40—C41—H41119.7
N4—C38—C39112.5 (6)C39—C44—C43121.7 (8)
N4—C38—H38A109.1C39—C44—H44119.1
C39—C38—H38A109.1C43—C44—H44119.1
N4—C38—H38B109.1C7—C6—C5120.2 (8)
C39—C38—H38B109.1C7—C6—H6119.9
H38A—C38—H38B107.8C5—C6—H6119.9
O1—C1—N1129.9 (7)C20—C19—C18121.8 (9)
O1—C1—C3117.1 (7)C20—C19—H19119.1
N1—C1—C3113.0 (8)C18—C19—H19119.1
O2—C23—N3130.8 (7)C14—C13—C12120.2 (10)
O2—C23—C25116.6 (7)C14—C13—H13119.9
N3—C23—C25112.5 (7)C12—C13—H13119.9
C32—C37—C36120.1 (8)C17—C22—C21120.8 (8)
C32—C37—H37120C17—C22—H22119.6
C36—C37—H37120C21—C22—H22119.6
C4—C5—C6119.9 (8)C6—C7—C8119.4 (8)
C4—C5—H5120.1C6—C7—H7120.3
C6—C5—H5120.1C8—C7—H7120.3
C41—C42—C43119.6 (9)C35—C34—C33120.0 (9)
C41—C42—H42120.2C35—C34—H34120
C43—C42—H42120.2C33—C34—H34120
C44—C43—C42119.2 (8)C12—C11—C10121.1 (8)
C44—C43—H43120.4C12—C11—H11119.4
C42—C43—H43120.4C10—C11—H11119.4
C37—C32—C33118.2 (8)C13—C14—C15119.3 (9)
C37—C32—C31120.2 (8)C13—C14—H14120.3
C33—C32—C31121.5 (7)C15—C14—H14120.3

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2137).

References

  • Arslan, H., Flörke, U. & Külcü, N. (2003). Transition Met. Chem.28, 816–819.
  • Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hernández, W., Spodine, E., Muñoz, J. C., Beyer, L., Schröder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl 1, 271–284. [PMC free article] [PubMed]
  • Jia, D.-X., Zhu, A.-M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem.633, 2059–2063.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pérez, H., Mascarenhas, Y., Plutín, A. M., Souza Corrêa, R. de & Duque, J. (2008). Acta Cryst. E64, m503. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography