PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m861–m862.
Published online 2008 June 7. doi:  10.1107/S1600536808016267
PMCID: PMC2961861

Poly[bis­(N,N-dimethyl­formamide)tris­(μ4-trans-stilbene-4,4′-dicarboxyl­ato)­tricadmium(II)]: a two-dimensional network with an unusual 36 topology

Abstract

In the title compound, [Cd3(C16H10O4)3(C3H7NO)2]n or [Cd3(SDA)3(DMF)2]n (H2SDA is trans-stilbene-4,4′-dicarboxylic acid and DMF is dimethyl­formamide), the linear dicarboxylate ligand forms a two-dimensionally layered metal–organic network with the relatively uncommon 36 topology. The structure reveals trinuclear secondary building units and has an octa­hedral geometry at a central metal ion (occupying a An external file that holds a picture, illustration, etc.
Object name is e-64-0m861-efi1.jpg symmetry site) and tetra­hedral geometries at two surrounding symmetrically equivalent metal ions lying on a threefold axis. The six-connected planar trinuclear CdII centers, Cd3(O2CR)6, play a role as potential nodes in generation of the relatively uncommon 36 topology. The coordinated DMF unit is disordered around the threefold axis.

Related literature

For related literature, see: Chi et al. (2006 [triangle]); Dincâ & Long (2005 [triangle]); Dybtsev et al. (2004 [triangle]); Eddaoudi et al. (2002 [triangle]); Edgar et al. (2001 [triangle]); Hawxwell et al. (2006 [triangle]); Hill et al. (2005 [triangle]); Luan et al. (2006 [triangle]); Park et al. (2006 [triangle]); Rosi et al. (2003 [triangle]); Saalfrank et al. (2001 [triangle]); Seo et al. (2000 [triangle]); Wang et al. (2006 [triangle]); Williams et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m861-scheme1.jpg

Experimental

Crystal data

  • [Cd3(C16H10O4)3(C3H7NO)2]
  • M r = 1282.11
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0m861-efi2.jpg
  • a = 16.4881 (5) Å
  • c = 16.7919 (10) Å
  • V = 3953.4 (3) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 223 (2) K
  • 0.30 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.69, T max = 0.69
  • 6604 measured reflections
  • 2105 independent reflections
  • 1782 reflections with I > 2σ(I)
  • R int = 0.104

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.181
  • S = 1.18
  • 2105 reflections
  • 136 parameters
  • 92 restraints
  • H-atom parameters constrained
  • Δρmax = 1.70 e Å−3
  • Δρmin = −1.53 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016267/bg2189sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016267/bg2189Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Professor Kimoon Kim and Mr Hyunuk Kim for the crystallographic work and helpful discussions.

supplementary crystallographic information

Comment

The study of one, two or three dimensional metal-organic frameworks (MOFs) has attracted much attention in the past decade due to their various intriguing framework topologies but also for their potential applications in gas storage (Rosi et al., 2003), separation (Dybtsev et al., 2004) and catalysis (Seo et al., 2000) etc. Many factors play important role in the synthesis of MOFs such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Eddaoudi et al., 2002),the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Saalfrank et al., 2001). The simplest 2D sheets are those which comprise just one kind of regular polygon based upon hexagons, squares and triangles. Since three hexagons, four squares and six triangles meet at a node in a 2D network with angles of 120°, 90° and 60°,respectively, the corresponding Schläfli topology symbols are 63, 44 and 36, respectively (Hill et al., 2005). Although there were many examples of uninodal regularly tiled 2D metal–organic frameworks comprising linked squares or hexagons, however, a few examples comprising linked and tiled triangles have been reported only very recently (Edgar et al., 2001; Williams et al., 2005; Hawxwell et al., 2006; Dincâ & Long, 2005). Herein the formation of a two-dimensional metal-organic framework with an uncommon 36 tessellated topology, [Cd3(SDA)3(DMF)2], (I), constructed from tri-nuclear cadmium SBUs (secondary building units) linked by a novel 4,4'-stilbenedicarboxylate ligand (Park et al., 2006) is reported.

The two-dimensional 36 tessellated network structure of 1 with the atomic numbering scheme is shown in Fig. 1 in which the coordinated DMF molecules are shown in only one of its three disordered components. The crystal structure of 1 is constructed from the tri-nuclear Cd3(O2CR)6 SBUs cluster which contains two crystallographically equivalent four-coordinate terminal metal centers (Cd2) in which the O atom (O1S) of the DMF is axially coordinated and a six-coordinate central metal atom (Cd1). The coordination environment around the central CdII atom, Cd1, in the trinuclear center is an octahedron with all six positions occupied by one carboxylate oxygen, O1, from each half unit of six SDA ligands (Fig. 1) and that of the two symmetry equivalent neighbouring CdII atoms, Cd2, is a tetrahedron with three coordination sites occupied by the other carboxylate oxygen, O2, from a half unit of three SDA ligands and the vacant site occupied by an oxygen atom, O1S in the DMF molecule.

Experimental

A mixture of Cd(NO3)2.6H2O (0.122 g, 3.95 x 10 -4 mol) and H2SDA (0.106 g,3.95 x 10 -4 mol) was suspended in DMF (1.3 ml), placed in a sealed-glasstube,and heated at 90°C for 3 days. Upon cooling to room temperature, the pale-yellow crystalline was formed, collected by filtration, washed with DMF,and driedunder a reduced pressure at room temperature for 5 h to give the product (0.178 g, 78%). Anal. Calcd. for [Cd3(SDA)3(DMF)2]: C,50.59; H, 3.75; N, 2.18. Found: C, 50.69; H, 3.72; N, 2.12

Refinement

All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions with distances C—H = 0.94 Å (aromatic H), C—H = 0.94 Å (attached to carboxylic C in DMF) and C—H = 0.97 Å (attached to methyl C in DMF). Coordinated DMF is disordered over three sites around the threefold axis. Even if oxygen O1S was refined with a unique position, the large displacement factor attained suggests some kind of unresolved splitting. Similarity restraints in distances and thermal parameters were used in order to attain a reasonable geometry of the (disordered) coordinated DMF.

Figures

Fig. 1.
The trinuclear Cd3(O2CR)6 SBU cluster for 1 showing the bridging SDA ligands and the coordinated DMF molecule. The remainder of the SDA is removed and only one of the threefold disordered DMF molecule is shown for clarity. Cd atoms are shown in green, ...
Fig. 2.
[001] view of the structure showing the 36 topology. (a) A single 2D layer . (b) Two overimposed close-packed layers, A and B. (c) Cubic close-packed layers, in ABC pattern.

Crystal data

[Cd3(C16H10O4)3(C3H7N1O1)2]Z = 3
Mr = 1282.11F000 = 1914
Trigonal, R3Dx = 1.616 Mg m3
Hall symbol: -R 3Mo Kα radiation λ = 0.71073 Å
a = 16.4881 (5) ÅCell parameters from 6604 reflections
b = 16.4881 (5) Åθ = 1.9–28.4º
c = 16.7919 (10) ŵ = 1.27 mm1
α = 90ºT = 223 (2) K
β = 90ºCubic, colourless
γ = 120º0.30 × 0.30 × 0.30 mm
V = 3953.4 (3) Å3

Data collection

Siemens SMART CCD diffractometer2105 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.104
T = 223(2) Kθmax = 28.4º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.69, Tmax = 0.69k = −21→18
6604 measured reflectionsl = −21→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.181  w = 1/[σ2(Fo2) + (0.0995P)2 + 4.8382P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
2105 reflectionsΔρmax = 1.70 e Å3
136 parametersΔρmin = −1.53 e Å3
92 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.00001.00001.00000.0302 (2)
Cd20.00001.00000.79310 (3)0.0424 (2)
O10.1245 (2)1.0679 (2)0.9162 (2)0.0521 (7)
O20.1222 (2)1.1401 (2)0.8067 (2)0.0599 (9)
C10.1562 (3)1.1402 (3)0.8740 (3)0.0458 (9)
C20.2391 (3)1.2283 (3)0.9015 (3)0.0579 (12)
C30.2624 (5)1.3134 (4)0.8665 (4)0.0748 (17)
H3A0.22591.31420.82380.090*
C40.3368 (6)1.3965 (5)0.8918 (5)0.109 (3)
H4A0.34961.45310.86770.131*
C50.3911 (6)1.3967 (5)0.9510 (5)0.112 (3)
C60.4698 (8)1.4929 (7)0.9730 (7)0.138 (4)
H60.47481.54490.94560.166*
C70.3714 (7)1.3114 (7)0.9864 (6)0.133 (4)
H7A0.40951.31201.02830.159*
C80.2968 (5)1.2260 (5)0.9610 (4)0.099 (3)
H8A0.28591.16900.98310.118*
O1S0.00001.00000.6625 (11)0.186 (4)
N1S0.106 (2)1.082 (2)0.5571 (18)0.188 (5)0.33
C1S0.067 (4)1.086 (4)0.625 (2)0.190 (6)0.33
H1S0.08251.14360.64790.228*0.33
C2S0.136 (3)1.014 (3)0.547 (3)0.188 (5)0.33
H2S10.14260.99160.59850.282*0.33
H2S20.19581.04290.51940.282*0.33
H2S30.08990.96160.51560.282*0.33
C3S0.144 (3)1.160 (3)0.502 (2)0.190 (5)0.33
H3S10.09641.17710.49090.284*0.33
H3S20.16151.14200.45310.284*0.33
H3S30.19801.21290.52570.284*0.33

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0307 (3)0.0307 (3)0.0291 (4)0.01536 (14)0.0000.000
Cd20.0414 (3)0.0414 (3)0.0443 (4)0.02070 (14)0.0000.000
O10.0407 (15)0.0402 (15)0.068 (2)0.0147 (13)0.0172 (14)0.0081 (13)
O20.0493 (17)0.061 (2)0.0463 (17)0.0106 (15)0.0029 (13)0.0043 (14)
C10.0361 (19)0.044 (2)0.047 (2)0.0117 (16)0.0112 (16)0.0003 (16)
C20.052 (3)0.048 (2)0.048 (2)0.006 (2)0.0016 (19)0.0048 (18)
C30.062 (3)0.047 (3)0.090 (4)0.008 (3)−0.004 (3)0.013 (3)
C40.093 (5)0.045 (3)0.134 (7)−0.006 (3)−0.026 (5)0.008 (4)
C50.108 (6)0.067 (4)0.091 (5)−0.008 (4)−0.016 (4)−0.006 (4)
C60.137 (8)0.095 (6)0.130 (8)0.018 (5)−0.037 (6)0.024 (5)
C70.113 (7)0.112 (7)0.094 (5)−0.003 (5)−0.057 (5)0.013 (5)
C80.090 (4)0.075 (4)0.075 (4)−0.001 (3)−0.032 (3)0.025 (3)
O1S0.192 (4)0.192 (4)0.174 (6)0.096 (2)0.0000.000
N1S0.186 (6)0.190 (6)0.181 (6)0.089 (4)0.000 (4)0.000 (4)
C1S0.192 (8)0.191 (7)0.178 (7)0.088 (6)−0.002 (5)−0.006 (5)
C2S0.186 (6)0.190 (6)0.183 (6)0.090 (4)−0.001 (4)0.001 (4)
C3S0.189 (6)0.190 (6)0.184 (6)0.090 (4)0.000 (4)0.001 (4)

Geometric parameters (Å, °)

Cd1—O1i2.269 (3)C5—C71.408 (13)
Cd1—O1ii2.269 (3)C5—C61.509 (12)
Cd1—O1iii2.269 (3)C6—C6vi1.279 (19)
Cd1—O12.269 (3)C6—H60.9400
Cd1—O1iv2.269 (3)C7—C81.395 (10)
Cd1—O1v2.269 (3)C7—H7A0.9400
Cd1—Cd2v3.4742 (5)C8—H8A0.9400
Cd1—Cd23.4742 (5)O1S—C1Siii1.43 (4)
Cd2—O22.189 (3)O1S—C1Si1.43 (4)
Cd2—O2iii2.189 (3)O1S—C1S1.43 (4)
Cd2—O2i2.189 (3)N1S—C1S1.323 (9)
Cd2—O1S2.193 (19)N1S—C3S1.445 (9)
O1—C11.255 (5)N1S—C2S1.448 (9)
O2—C11.262 (6)C1S—H1S0.9400
C1—C21.484 (6)C2S—H2S10.9700
C2—C31.386 (8)C2S—H2S20.9700
C2—C81.394 (8)C2S—H2S30.9700
C3—C41.373 (9)C3S—H3S10.9700
C3—H3A0.9400C3S—H3S20.9700
C4—C51.336 (12)C3S—H3S30.9700
C4—H4A0.9400
O1i—Cd1—O1ii180.00 (13)C3—C2—C1120.9 (5)
O1i—Cd1—O1iii85.62 (14)C8—C2—C1120.1 (5)
O1ii—Cd1—O1iii94.38 (14)C4—C3—C2122.4 (7)
O1i—Cd1—O185.62 (14)C4—C3—H3A118.8
O1ii—Cd1—O194.38 (14)C2—C3—H3A118.8
O1iii—Cd1—O185.62 (14)C5—C4—C3119.8 (7)
O1i—Cd1—O1iv94.38 (14)C5—C4—H4A120.1
O1ii—Cd1—O1iv85.62 (14)C3—C4—H4A120.1
O1iii—Cd1—O1iv180.000 (1)C4—C5—C7119.5 (6)
O1—Cd1—O1iv94.38 (14)C4—C5—C6114.1 (8)
O1i—Cd1—O1v94.38 (14)C7—C5—C6126.4 (8)
O1ii—Cd1—O1v85.62 (14)C6vi—C6—C5123.3 (13)
O1iii—Cd1—O1v94.38 (14)C6vi—C6—H6118.4
O1—Cd1—O1v180.000 (1)C5—C6—H6118.4
O1iv—Cd1—O1v85.62 (14)C8—C7—C5121.7 (7)
O1i—Cd1—Cd2v128.30 (9)C8—C7—H7A119.1
O1ii—Cd1—Cd2v51.70 (9)C5—C7—H7A119.1
O1iii—Cd1—Cd2v128.30 (9)C7—C8—C2117.4 (7)
O1—Cd1—Cd2v128.30 (9)C7—C8—H8A121.3
O1iv—Cd1—Cd2v51.70 (9)C2—C8—H8A121.3
O1v—Cd1—Cd2v51.70 (9)C1Siii—O1S—C1Si102 (3)
O1i—Cd1—Cd251.70 (9)C1Siii—O1S—C1S102 (3)
O1ii—Cd1—Cd2128.30 (9)C1Si—O1S—C1S102 (3)
O1iii—Cd1—Cd251.70 (9)C1Siii—O1S—Cd2116 (2)
O1—Cd1—Cd251.70 (9)C1Si—O1S—Cd2116 (2)
O1iv—Cd1—Cd2128.30 (9)C1S—O1S—Cd2116 (2)
O1v—Cd1—Cd2128.30 (9)C1S—N1S—C3S120.7 (11)
Cd2v—Cd1—Cd2180.0C1S—N1S—C2S120.1 (11)
O2—Cd2—O2iii118.93 (3)C3S—N1S—C2S116.8 (10)
O2—Cd2—O2i118.93 (3)N1S—C1S—O1S119 (4)
O2iii—Cd2—O2i118.93 (3)N1S—C1S—H1S120.4
O2—Cd2—O1S95.98 (9)O1S—C1S—H1S120.4
O2iii—Cd2—O1S95.98 (9)N1S—C2S—H2S1109.5
O2i—Cd2—O1S95.98 (9)N1S—C2S—H2S2109.5
O2—Cd2—Cd184.02 (9)H2S1—C2S—H2S2109.5
O2iii—Cd2—Cd184.02 (9)N1S—C2S—H2S3109.5
O2i—Cd2—Cd184.02 (9)H2S1—C2S—H2S3109.5
O1S—Cd2—Cd1180.000 (4)H2S2—C2S—H2S3109.5
C1—O1—Cd1131.5 (3)N1S—C3S—H3S1109.5
C1—O2—Cd2105.6 (3)N1S—C3S—H3S2109.5
O1—C1—O2122.1 (4)H3S1—C3S—H3S2109.5
O1—C1—C2119.8 (4)N1S—C3S—H3S3109.5
O2—C1—C2118.1 (4)H3S1—C3S—H3S3109.5
C3—C2—C8119.0 (5)H3S2—C3S—H3S3109.5

Symmetry codes: (i) −x+y−1, −x+1, z; (ii) xy+1, x+1, −z+2; (iii) −y+1, xy+2, z; (iv) y−1, −x+y, −z+2; (v) −x, −y+2, −z+2; (vi) −x+1, −y+3, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2189).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem.45, 10605–10612. [PubMed]
  • Dincâ, M. & Long, J. R. (2005). J. Am. Chem. Soc.127, 9376–9377. [PubMed]
  • Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc.126, 32–33. [PubMed]
  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. [PubMed]
  • Edgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J.7, 5168–5175. [PubMed]
  • Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814. [PubMed]
  • Hill, R. J., Long, D., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res.38, 337–350. [PubMed]
  • Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J.12, 6281–6289. [PubMed]
  • Park, G., Kim, H., Lee, G. H., Park, S. & Kim, K. (2006). Bull. Korean Chem. Soc.27, 443–446.
  • Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O’Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. [PubMed]
  • Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J.7, 2765–2769. [PubMed]
  • Seo, J. S., Wang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). Nature (London), 404, 982–986. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc.128, 674–675. [PubMed]
  • Williams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435–5437. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography