PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m919–m920.
Published online 2008 June 13. doi:  10.1107/S1600536808017285
PMCID: PMC2961858

μ-Aqua-κ2 O:O-di-μ-4-methyl­benzoato-κ4 O:O′-bis­[(4-methyl­benzoato-κO)(1,10-phenanthroline-κ2 N,N′)nickel(II)]

Abstract

In the title dinuclear complex, [Ni2(C8H7O2)4(C12H8N2)2(H2O)], each NiII atom is six-coordinated by three carboxylate O atoms from three 4-methyl­benzoate ligands, two N atoms from two 1,10-phenanthroline ligands, and one μ2-bridging aqua ligand. The dimeric complex is located on a crystallographic twofold axis and each Ni atom displays a distorted octa­hedral coordination geometry. The crystal structure is stabilized via intra­molecular hydrogen bonding of the bridging water mol­ecule and the uncoordinated carboxyl­ate O atoms, and by C—H(...)O and π–π stacking inter­actions [centroid–centroid distances between neighbouring phenanthroline ring systems and between the benzene ring of a 4-methyl­benzoate unit and a phenanthroline ring system are 3.662 (2) and 3.611 (3) Å, respectively].

Related literature

For the coordination chemistry of 4-methylbenzoate complexes see: Song et al. (2007 [triangle]); Li et al. (2003 [triangle], 2004 [triangle]); Geetha et al. (1999 [triangle]). For related complexes, see: Eremenko et al. (1999 [triangle]); Sung et al. (2000 [triangle]); Novak et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m919-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C8H7O2)4(C12H8N2)2(H2O)]
  • M r = 1036.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m919-efi2.jpg
  • a = 23.4180 (6) Å
  • b = 15.4595 (4) Å
  • c = 15.6140 (3) Å
  • β = 122.351 (1)°
  • V = 4775.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.85 mm−1
  • T = 296 (2) K
  • 0.35 × 0.32 × 0.26 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.612, T max = 0.801
  • 23989 measured reflections
  • 5125 independent reflections
  • 3585 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.117
  • S = 1.08
  • 5125 reflections
  • 326 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017285/zl2119sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017285/zl2119Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Guang Dong Ocean University for supporting this study.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzoate complexes, it has been found that 4-methylbenzoic acid can function as a multidentate ligand [Song et al. (2007); Li et al. (2003); Li et al. (2004); Geetha et al. (1999)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ni complex obtained by the reaction of 4-methylbenzoic acid, 1,10-phenanthroline and nickel chloride in alkaline aqueous solution.

As illustrated in Figure 1, each NiII atom, lies on a crystallographic two fold axis, and has a distorted octahedral geometry with the six coordinating atoms being three carboxyl O atoms from two µ2-bridging 4-methylbenzoate ligands and one 4-methylbenzoate ligand, two N atoms from two 1,10-phenanthroline ligands, and one µ2-bridging aqua ligand. Therefore, the O1W water molecule bridges both Ni atoms [Ni1···O1W···Ni2i 110.40 (11)°, symmetry code i = -x, y, -z+1/2] and with a Ni···Nii distance of 3.449 (3) Å. This value is similar to that observed for a binuclear pivalate complexes with a bridging water molecule Ni2L4(µ-OH2)(µ-OOCCMe3)2(OOCCMe3)2, (L2=Py2, (3,4-lutidine)2, (N-nitroxyethylnicotinamide)2, Dipy) [Eremenko et al. (1999)], for which ferromagnetic spin exchange was observed. The Ni···O1W distance is 2.100 (14) Å which is a little shorter than that in other similar complexes [Sung et al., 2000; Novak et al., 2005], suggesting their non-negligible interactions.

The interactions of the structural components are governed by O—H···O hydrogen bonds, C—H···O interactions (Table 1) and by two types of π-π stacking interactions between two closeby phenantroline rings and between a phenyl ring of a 4-methylbenzoate unit and a phenantroline unit. The centroid to centroid distances for the further π-π stacking interaction is 3.662 (2) Å [symmetry code = x, -y, z-1/2], that of the latter 3.611 (3) Å [symmetry code = 1/2-x, 1/2-y, 1-z], respectively, thus indicating weak π-π stacking interactions (Fig. 2).

Experimental

A mixture of nickel chloride (1 mmol), 4-methylbenzate (1 mmol), 1,10-phenanthroline (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å, each within a standard deviation of 0.01 Å with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids. Symmetry code i = -x, y, -z+1/2.
Fig. 2.
A packing view of the title compound. The purple spheres represent ring centroids involved in π-π stacking interactions (blue dashed lines). The green dashed lines represent C—H···O and O—H···O ...

Crystal data

[Ni2(C8H7O2)4(C12H8N2)2(H2O)]Z = 4
Mr = 1036.39F000 = 2152
Monoclinic, C2/cDx = 1.442 Mg m3
Hall symbol: -C 2ycMo Kα radiation λ = 0.71073 Å
a = 23.4180 (6) Åθ = 1.3–28.0º
b = 15.4595 (4) ŵ = 0.85 mm1
c = 15.6140 (3) ÅT = 296 (2) K
β = 122.3510 (10)ºBlock, blue
V = 4775.4 (2) Å30.35 × 0.32 × 0.26 mm

Data collection

Bruker APEXII area-detector diffractometer5125 independent reflections
Radiation source: fine-focus sealed tube3585 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
T = 296(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −29→29
Tmin = 0.612, Tmax = 0.801k = −19→18
23989 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117  w = 1/[σ2(Fo2) + (0.0505P)2 + 0.0814P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5125 reflectionsΔρmax = 0.40 e Å3
326 parametersΔρmin = −0.49 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.045434 (16)0.85690 (2)0.38073 (2)0.03319 (13)
C10.09421 (15)1.00994 (18)0.5312 (2)0.0456 (7)
H10.05201.03480.48820.055*
C20.14290 (18)1.0573 (2)0.6149 (2)0.0573 (8)
H20.13301.11220.62770.069*
C30.20514 (18)1.0217 (2)0.6776 (2)0.0588 (9)
H30.23831.05290.73300.071*
C40.21914 (15)0.9386 (2)0.6588 (2)0.0505 (8)
C50.28260 (17)0.8954 (3)0.7205 (3)0.0660 (10)
H50.31790.92440.77570.079*
C60.29252 (16)0.8141 (3)0.7008 (2)0.0653 (10)
H60.33430.78790.74300.078*
C70.23985 (14)0.7668 (2)0.6159 (2)0.0491 (8)
C80.24653 (16)0.6815 (2)0.5925 (3)0.0573 (9)
H80.28690.65180.63310.069*
C90.19382 (17)0.6424 (2)0.5102 (3)0.0569 (8)
H90.19730.58500.49550.068*
C100.13391 (15)0.68918 (19)0.4475 (2)0.0480 (7)
H100.09860.66230.39020.058*
C110.17777 (13)0.80871 (18)0.55122 (19)0.0408 (7)
C120.16736 (14)0.89602 (19)0.5737 (2)0.0413 (6)
C13−0.03124 (13)0.72317 (18)0.4141 (2)0.0382 (6)
C14−0.04880 (13)0.68008 (18)0.4834 (2)0.0400 (6)
C15−0.05758 (15)0.59133 (19)0.4793 (2)0.0492 (7)
H15−0.05380.55900.43240.059*
C16−0.07204 (18)0.5503 (2)0.5444 (3)0.0593 (9)
H16−0.07670.49040.54150.071*
C17−0.07961 (17)0.5960 (2)0.6133 (3)0.0608 (9)
C18−0.07257 (18)0.6851 (2)0.6154 (3)0.0650 (9)
H18−0.07860.71770.66010.078*
C19−0.05673 (16)0.7264 (2)0.5519 (2)0.0526 (8)
H19−0.05140.78620.55550.063*
C20−0.0955 (2)0.5511 (3)0.6843 (3)0.0894 (13)
H20A−0.08330.58820.74090.134*
H20B−0.07030.49820.70820.134*
H20C−0.14300.53850.64890.134*
C210.07639 (13)0.96624 (16)0.2598 (2)0.0345 (6)
C220.11522 (13)1.04903 (17)0.2811 (2)0.0372 (6)
C230.17742 (15)1.0578 (2)0.3710 (2)0.0522 (8)
H230.19391.01370.41890.063*
C240.21486 (18)1.1324 (2)0.3892 (3)0.0652 (10)
H240.25711.13690.44880.078*
C250.19139 (19)1.1998 (2)0.3216 (3)0.0600 (9)
C260.12895 (18)1.19063 (19)0.2329 (3)0.0562 (8)
H260.11191.23560.18610.067*
C270.09145 (15)1.11616 (18)0.2125 (2)0.0446 (7)
H270.04981.11120.15200.054*
C280.2333 (2)1.2813 (2)0.3433 (3)0.0947 (15)
H28A0.22931.31710.39010.142*
H28B0.21721.31240.28120.142*
H28C0.27981.26580.37220.142*
N10.10564 (11)0.93089 (14)0.51042 (16)0.0379 (5)
N20.12593 (11)0.77022 (14)0.46695 (16)0.0385 (5)
O1−0.00788 (10)0.79909 (12)0.43632 (15)0.0443 (5)
O2−0.04096 (10)0.68100 (13)0.33837 (15)0.0501 (5)
O30.10179 (9)0.90933 (11)0.32838 (13)0.0407 (4)
O40.02143 (9)0.95844 (11)0.17574 (13)0.0382 (4)
O1W0.00000.77938 (16)0.25000.0367 (6)
H1W0.0180 (14)0.7449 (15)0.231 (2)0.055*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0289 (2)0.0333 (2)0.03124 (19)−0.00013 (14)0.01199 (15)0.00146 (14)
C10.0499 (18)0.0420 (17)0.0396 (15)−0.0063 (13)0.0203 (15)−0.0012 (13)
C20.073 (2)0.0460 (19)0.0487 (18)−0.0183 (16)0.0300 (19)−0.0083 (15)
C30.061 (2)0.064 (2)0.0419 (17)−0.0304 (17)0.0205 (17)−0.0091 (15)
C40.0402 (17)0.064 (2)0.0356 (15)−0.0185 (15)0.0125 (14)0.0014 (14)
C50.0388 (19)0.091 (3)0.0448 (19)−0.0174 (18)0.0070 (16)0.0044 (18)
C60.0310 (17)0.101 (3)0.0457 (19)0.0010 (18)0.0081 (15)0.0197 (19)
C70.0334 (16)0.067 (2)0.0442 (17)0.0057 (14)0.0190 (14)0.0181 (15)
C80.0416 (19)0.073 (2)0.058 (2)0.0215 (16)0.0272 (17)0.0271 (18)
C90.054 (2)0.053 (2)0.064 (2)0.0190 (16)0.0329 (19)0.0184 (16)
C100.0445 (18)0.0455 (18)0.0514 (18)0.0048 (14)0.0239 (15)0.0067 (14)
C110.0308 (15)0.0531 (18)0.0350 (15)0.0006 (12)0.0152 (13)0.0114 (12)
C120.0330 (16)0.0520 (17)0.0339 (14)−0.0060 (13)0.0146 (13)0.0058 (12)
C130.0265 (14)0.0417 (16)0.0413 (15)0.0033 (11)0.0148 (13)0.0053 (12)
C140.0306 (15)0.0458 (17)0.0402 (15)−0.0008 (12)0.0166 (13)0.0048 (12)
C150.0525 (19)0.0475 (19)0.0493 (18)−0.0021 (14)0.0282 (16)0.0022 (14)
C160.073 (2)0.0474 (19)0.064 (2)−0.0109 (16)0.041 (2)0.0020 (16)
C170.066 (2)0.065 (2)0.055 (2)−0.0126 (17)0.0349 (19)0.0052 (16)
C180.078 (3)0.073 (2)0.062 (2)−0.0128 (19)0.049 (2)−0.0112 (18)
C190.058 (2)0.0500 (18)0.0551 (19)−0.0080 (15)0.0339 (17)−0.0040 (15)
C200.113 (4)0.099 (3)0.085 (3)−0.023 (3)0.072 (3)0.006 (2)
C210.0323 (15)0.0353 (15)0.0360 (14)−0.0004 (11)0.0183 (13)−0.0004 (11)
C220.0370 (15)0.0387 (15)0.0371 (14)−0.0039 (12)0.0206 (13)−0.0061 (12)
C230.0476 (19)0.0549 (19)0.0452 (17)−0.0100 (15)0.0189 (15)−0.0063 (14)
C240.057 (2)0.076 (3)0.054 (2)−0.0284 (18)0.0244 (18)−0.0272 (18)
C250.080 (3)0.051 (2)0.070 (2)−0.0269 (17)0.053 (2)−0.0229 (17)
C260.079 (2)0.0380 (17)0.064 (2)−0.0070 (16)0.047 (2)−0.0035 (15)
C270.0492 (18)0.0381 (15)0.0465 (16)−0.0061 (13)0.0256 (15)−0.0052 (13)
C280.128 (4)0.072 (3)0.118 (3)−0.058 (3)0.088 (3)−0.047 (2)
N10.0359 (13)0.0400 (13)0.0321 (11)−0.0037 (10)0.0144 (10)0.0031 (10)
N20.0322 (13)0.0413 (13)0.0379 (12)0.0017 (10)0.0160 (11)0.0087 (10)
O10.0481 (12)0.0377 (11)0.0510 (11)−0.0047 (9)0.0292 (10)−0.0003 (9)
O20.0545 (13)0.0541 (13)0.0440 (11)−0.0156 (10)0.0280 (11)−0.0065 (10)
O30.0312 (10)0.0435 (11)0.0417 (11)0.0000 (8)0.0156 (9)0.0100 (9)
O40.0334 (10)0.0377 (10)0.0333 (10)−0.0050 (8)0.0110 (9)−0.0003 (8)
O1W0.0379 (16)0.0344 (15)0.0364 (14)0.0000.0190 (13)0.000

Geometric parameters (Å, °)

Ni1—O4i2.0533 (17)C14—C151.384 (4)
Ni1—O32.0546 (17)C15—C161.386 (4)
Ni1—O12.0665 (18)C15—H150.9300
Ni1—N12.084 (2)C16—C171.375 (4)
Ni1—O1W2.1001 (14)C16—H160.9300
Ni1—N22.108 (2)C17—C181.386 (5)
C1—N11.328 (3)C17—C201.513 (4)
C1—C21.396 (4)C18—C191.387 (4)
C1—H10.9300C18—H180.9300
C2—C31.363 (5)C19—H190.9300
C2—H20.9300C20—H20A0.9600
C3—C41.395 (4)C20—H20B0.9600
C3—H30.9300C20—H20C0.9600
C4—C121.395 (4)C21—O41.259 (3)
C4—C51.433 (5)C21—O31.262 (3)
C5—C61.343 (5)C21—C221.501 (3)
C5—H50.9300C22—C271.377 (4)
C6—C71.437 (4)C22—C231.386 (4)
C6—H60.9300C23—C241.382 (4)
C7—C81.399 (4)C23—H230.9300
C7—C111.408 (4)C24—C251.371 (5)
C8—C91.357 (5)C24—H240.9300
C8—H80.9300C25—C261.382 (5)
C9—C101.408 (4)C25—C281.520 (4)
C9—H90.9300C26—C271.378 (4)
C10—N21.326 (3)C26—H260.9300
C10—H100.9300C27—H270.9300
C11—N21.360 (3)C28—H28A0.9600
C11—C121.448 (4)C28—H28B0.9600
C12—N11.352 (3)C28—H28C0.9600
C13—O21.260 (3)O4—Ni1i2.0533 (17)
C13—O11.263 (3)O1W—Ni1i2.1001 (14)
C13—C141.504 (4)O1W—H1W0.830 (10)
C14—C191.379 (4)
O4i—Ni1—O391.85 (7)C16—C15—H15119.7
O4i—Ni1—O191.01 (7)C17—C16—C15121.6 (3)
O3—Ni1—O1177.14 (7)C17—C16—H16119.2
O4i—Ni1—N187.80 (8)C15—C16—H16119.2
O3—Ni1—N185.72 (8)C16—C17—C18117.7 (3)
O1—Ni1—N194.35 (8)C16—C17—C20121.5 (3)
O4i—Ni1—O1W98.37 (7)C18—C17—C20120.8 (3)
O3—Ni1—O1W86.43 (6)C17—C18—C19121.0 (3)
O1—Ni1—O1W93.19 (6)C17—C18—H18119.5
N1—Ni1—O1W170.16 (6)C19—C18—H18119.5
O4i—Ni1—N2167.39 (8)C14—C19—C18120.9 (3)
O3—Ni1—N287.68 (8)C14—C19—H19119.6
O1—Ni1—N289.52 (8)C18—C19—H19119.6
N1—Ni1—N279.60 (9)C17—C20—H20A109.5
O1W—Ni1—N294.17 (8)C17—C20—H20B109.5
N1—C1—C2122.7 (3)H20A—C20—H20B109.5
N1—C1—H1118.6C17—C20—H20C109.5
C2—C1—H1118.6H20A—C20—H20C109.5
C3—C2—C1119.0 (3)H20B—C20—H20C109.5
C3—C2—H2120.5O4—C21—O3124.9 (2)
C1—C2—H2120.5O4—C21—C22118.2 (2)
C2—C3—C4120.1 (3)O3—C21—C22116.8 (2)
C2—C3—H3120.0C27—C22—C23118.8 (3)
C4—C3—H3120.0C27—C22—C21121.7 (2)
C3—C4—C12116.9 (3)C23—C22—C21119.5 (3)
C3—C4—C5124.4 (3)C24—C23—C22119.8 (3)
C12—C4—C5118.7 (3)C24—C23—H23120.1
C6—C5—C4121.8 (3)C22—C23—H23120.1
C6—C5—H5119.1C25—C24—C23121.8 (3)
C4—C5—H5119.1C25—C24—H24119.1
C5—C6—C7121.3 (3)C23—C24—H24119.1
C5—C6—H6119.4C24—C25—C26117.8 (3)
C7—C6—H6119.4C24—C25—C28120.9 (4)
C8—C7—C11117.6 (3)C26—C25—C28121.3 (4)
C8—C7—C6124.0 (3)C27—C26—C25121.3 (3)
C11—C7—C6118.4 (3)C27—C26—H26119.4
C9—C8—C7119.7 (3)C25—C26—H26119.4
C9—C8—H8120.2C22—C27—C26120.5 (3)
C7—C8—H8120.2C22—C27—H27119.7
C8—C9—C10119.5 (3)C26—C27—H27119.7
C8—C9—H9120.2C25—C28—H28A109.5
C10—C9—H9120.2C25—C28—H28B109.5
N2—C10—C9122.4 (3)H28A—C28—H28B109.5
N2—C10—H10118.8C25—C28—H28C109.5
C9—C10—H10118.8H28A—C28—H28C109.5
N2—C11—C7122.5 (3)H28B—C28—H28C109.5
N2—C11—C12117.6 (2)C1—N1—C12117.7 (2)
C7—C11—C12119.9 (3)C1—N1—Ni1128.51 (19)
N1—C12—C4123.5 (3)C12—N1—Ni1113.21 (18)
N1—C12—C11116.6 (2)C10—N2—C11118.2 (2)
C4—C12—C11119.9 (3)C10—N2—Ni1129.91 (19)
O2—C13—O1124.9 (2)C11—N2—Ni1111.72 (18)
O2—C13—C14117.7 (2)C13—O1—Ni1123.86 (17)
O1—C13—C14117.4 (2)C21—O3—Ni1120.08 (16)
C19—C14—C15118.2 (3)C21—O4—Ni1i129.80 (16)
C19—C14—C13122.0 (3)Ni1—O1W—Ni1i110.41 (11)
C15—C14—C13119.8 (3)Ni1—O1W—H1W129 (2)
C14—C15—C16120.5 (3)Ni1i—O1W—H1W96 (2)
C14—C15—H15119.7

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.493.007 (3)115
C6—H6···O2ii0.932.523.296 (4)142
C8—H8···O3iii0.932.523.379 (4)153
O1W—H1W···O2i0.830 (10)1.746 (12)2.560 (2)166 (3)

Symmetry codes: (i) −x, y, −z+1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) −x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2119).

References

  • Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  • Eremenko, I. L., Nefedov, V. N., Sidorov, A. A., Golubnichaya, M. A., Danilov, P. V., Ikorskii, V. N., Shvedenkov, Y., u, G., Novotortsev, V. M. & Moiseev, I. I. (1999). Inorg. Chem 38, 3764–3773.
  • Geetha, K. & Chakravarty, A. R. (1999). J. Chem. Soc. Dalton Trans pp. 1623–1627.
  • Li, X. & Zou, Y. Q. (2003). Z. Kristallogr. New Cryst. Struct.218, 448–450.
  • Li, X., Zou, Y. Q. & Song, H. B. (2004). Z. Kristallogr. New Cryst. Struct 219, 278–280.
  • Novak, M. A., Prado, P. F., de Rangel e Silva, M. V., Skakle, J. M. S., Vaz, M. G. F., Wardell, J. L. & Wardell, S. M. S. V. (2005). Inorg. Chim. Acta, 358, 941–946.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.
  • Sung, N.-D., Yun, K.-S., Kim, J.-G. & Suh, I.-H. (2000). Acta Cryst. C56, e370–e371.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography