PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m917–m918.
Published online 2008 June 13. doi:  10.1107/S160053680801725X
PMCID: PMC2961857

Bis(N,N-diethyl­dithio­carbamato)(1,10-phenanthroline)cobalt(III) tetra­fluorido­borate

Abstract

The cationic complex in the structure of the title compound, [Co(Et2NCS2)2(C12H8N2)]BF4, has a CoIII atom with a distorted octa­hedral coordination formed by four S atoms of two diethyl­dithio­carbamate and two N atoms of 1,10-phenanthroline ligands. The crystal structure features head-to-tail stacking of the phenanthroline ligands. The tetra­fluorido­borate anions are positioned in the channels between the cation stacks running along the a axis, and form weak C—H(...)F interactions.

Related literature

For other bis­(dialkyl­dithio­carbamato)L 2cobalt(III) complexes (L 2 = bis­monodentate or bidentate ligands), see: Bhardwaj & Aftab (1990 [triangle]); Deplano & Trogu (1982 [triangle]); Deplano et al. (1983 [triangle]); Hendrickson et al. (1975 [triangle]); Holah & Murphy (1971 [triangle]); McCleverty et al. (1977 [triangle]); Okuno et al. (1989 [triangle]); Hodgson et al. (2008 [triangle]); Ware et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m917-scheme1.jpg

Experimental

Crystal data

  • [Co(C5H10NS2)2(C12H8N2)]BF4
  • M r = 622.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m917-efi1.jpg
  • a = 8.0064 (1) Å
  • b = 16.3421 (3) Å
  • c = 21.0927 (3) Å
  • β = 95.013 (1)°
  • V = 2749.24 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 203 (2) K
  • 0.38 × 0.12 × 0.06 mm

Data collection

  • Siemens SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.761, T max = 0.944
  • 16341 measured reflections
  • 5982 independent reflections
  • 4410 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.099
  • S = 1.07
  • 5982 reflections
  • 325 parameters
  • 24 restraints
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.44 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
C-H(...)F contacts (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801725X/ya2076sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801725X/ya2076Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the University of Auckland Research Committee. We thank Janet Hope for her assistance in the preparation of the complex.

supplementary crystallographic information

Comment

The reaction of the bimetallic cobalt(III) complex [Co2(Et2NCS2)5]BF4 (Hendrickson et al., 1975) with bidentate neutral and anionic ligands (L) has provided a convenient route for the preparation of mixed ligand cobalt(III) bisdithiocarbamate complexes such as [Co(Et2NCS2)2L]BF4 (McCleverty et al., 1977; Deplano & Trogu, 1982; Deplano et al., 1983; Ware et al., 1998; Hodgson et al., 2008). Several papers on the preparation of diimine complexes with L=2,2'-bipyridine or 1,10-phenantholine have been published (Holah & Murphy, 1971; Okuno et al., 1989; Bhardwaj & Aftab, 1990; Hodgson et al., 2008). In the present communication the crystal structure of [Co(Et2NCS2)2L]BF4 (L=1,10-phenanthroline)(I), formed by reaction of [Co2((C2H5)2NCS2)5]BF4 with 1,10-phenanthroline, is reported.

The molecular structure of (I) is shown in Fig. 1. The Co atom has a distorted octahedral coordination formed by four S atoms of two dithiocarbamate and two N atoms of 1,10-phenanthroline ligands (Table 1).

The crystal packing of the title compound (Fig. 2) features head-to-tail cationic complexes assembled in the crystal via stacking of the phenanthroline ligands in an alternating mode (interplanar distance is 3.57 Å). The tetrafluoroborate anions are located in the channels between the cation stacks running along the a axis of the structure and are held in position by many C—H···F interactions between phenanthroline C—H bonds and the F atoms of the tetrafluoroborate anion, (Table 2).

Experimental

The complex(I) was prepared by reaction of equimolar amounts of [Co2((C2H5)2NCS2)5]BF4 (Hendrickson et al., 1975) and 1,10-phenanthroline in dichloromethane solution at room temperature following the same procedure to that reported for the synthesis of the analogous dimethyldithiocarbamate complex (Hodgson et al., 2008). Crystals were grown from a dichloromethane solution.

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene groups and 1.5Ueq(C) for methyl groups. In the case of the methyl groups, protons were rotated to fit the H-atom positions to the observed electron density. SHELXL97 retraints SIMU and DELU (Sheldrick, 2008) were applied to the thermal parameters for the fluorine atoms of the tetrafluoroborate anions.

Figures

Fig. 1.
Structure of (I) showing 50% probability displacement ellipsoids; the H atoms are omitted for clarity.
Fig. 2.
The crystal packing of the title compound viewed along the a axis showing stacking of phenanthroline ligands as well as the channels between cation stacks occupied by the BF4- ions.

Crystal data

[Co(C5H10NS2)2(C12H8N2)]BF4F000 = 1280
Mr = 622.46Dx = 1.504 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
a = 8.0064 (1) ÅCell parameters from 8163 reflections
b = 16.3421 (3) Åθ = 1.9–27.5º
c = 21.0927 (3) ŵ = 0.97 mm1
β = 95.013 (1)ºT = 203 (2) K
V = 2749.24 (7) Å3Needle, red
Z = 40.38 × 0.12 × 0.06 mm

Data collection

Siemens SMART CCD diffractometer5982 independent reflections
Radiation source: fine-focus sealed tube4410 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 203(2) Kθmax = 27.5º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.761, Tmax = 0.944k = −19→20
16341 measured reflectionsl = −17→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.099  w = 1/[σ2(Fo2) + (0.023P)2 + 3.5289P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5982 reflectionsΔρmax = 0.49 e Å3
325 parametersΔρmin = −0.44 e Å3
24 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co0.18850 (5)0.24157 (2)0.017869 (19)0.02837 (11)
S1−0.08717 (9)0.25666 (4)−0.01750 (4)0.03400 (18)
S20.18002 (9)0.36489 (4)−0.02902 (4)0.03424 (18)
S30.16723 (10)0.29916 (5)0.11419 (4)0.03561 (19)
S40.45935 (9)0.25371 (5)0.05787 (4)0.03378 (18)
N10.1650 (3)0.12827 (14)0.05041 (11)0.0287 (5)
N20.2630 (3)0.18340 (14)−0.05766 (11)0.0296 (5)
N3−0.1280 (3)0.39591 (15)−0.08739 (13)0.0369 (6)
N40.4748 (3)0.31052 (16)0.17814 (13)0.0405 (6)
C10.1077 (4)0.10206 (19)0.10422 (15)0.0360 (7)
H1A0.06600.14060.13190.043*
C20.1072 (4)0.01878 (19)0.12111 (16)0.0405 (8)
H2A0.06490.00240.15930.049*
C30.1684 (4)−0.03832 (18)0.08182 (16)0.0372 (7)
H3A0.1702−0.09390.09320.045*
C40.2289 (4)−0.01328 (17)0.02424 (15)0.0310 (6)
C50.2980 (4)−0.06714 (17)−0.02050 (16)0.0359 (7)
H5A0.3055−0.1234−0.01150.043*
C60.3526 (4)−0.03887 (18)−0.07522 (16)0.0373 (7)
H6A0.3979−0.0758−0.10330.045*
C70.3427 (4)0.04682 (18)−0.09137 (14)0.0319 (7)
C80.3982 (4)0.0808 (2)−0.14704 (15)0.0397 (8)
H8A0.44250.0472−0.17760.048*
C90.3868 (4)0.1636 (2)−0.15598 (15)0.0410 (8)
H9A0.42560.1872−0.19260.049*
C100.3178 (4)0.21330 (19)−0.11098 (15)0.0368 (7)
H10A0.30970.2699−0.11860.044*
C110.2767 (3)0.10037 (16)−0.04794 (14)0.0277 (6)
C120.2215 (3)0.07098 (16)0.01001 (13)0.0273 (6)
C21−0.0290 (4)0.34776 (17)−0.05069 (15)0.0312 (7)
C22−0.3106 (4)0.38155 (19)−0.09710 (17)0.0419 (8)
H22A−0.33700.3281−0.07930.050*
H22B−0.34550.3806−0.14280.050*
C23−0.4057 (5)0.4470 (3)−0.0658 (3)0.0801 (15)
H23A−0.52500.4362−0.07290.120*
H23B−0.38100.4998−0.08390.120*
H23C−0.37260.4474−0.02050.120*
C24−0.0615 (4)0.46964 (19)−0.11725 (17)0.0438 (8)
H24A0.06000.4722−0.10680.053*
H24B−0.11110.5184−0.09940.053*
C25−0.0982 (5)0.4703 (2)−0.18846 (19)0.0620 (11)
H25A−0.05240.5197−0.20570.093*
H25B−0.21850.4689−0.19910.093*
H25C−0.04720.4228−0.20650.093*
C310.3820 (4)0.29130 (17)0.12572 (15)0.0329 (7)
C320.4009 (5)0.3398 (2)0.23524 (16)0.0501 (9)
H32A0.29400.36700.22260.060*
H32B0.47590.38030.25700.060*
C330.3713 (6)0.2702 (3)0.2810 (2)0.0727 (13)
H33A0.32220.29190.31800.109*
H33B0.47720.24400.29440.109*
H33C0.29560.23050.25990.109*
C340.6587 (4)0.3015 (2)0.18175 (19)0.0574 (10)
H34A0.68720.25520.15520.069*
H34B0.70090.28940.22580.069*
C350.7437 (5)0.3778 (3)0.1599 (3)0.0833 (16)
H35A0.86400.36940.16300.125*
H35B0.71760.42360.18660.125*
H35C0.70390.38940.11600.125*
B0.8580 (6)0.1060 (2)0.25563 (19)0.0456 (10)
F10.7989 (3)0.11912 (17)0.31314 (12)0.0873 (8)
F20.9614 (4)0.16960 (17)0.24311 (15)0.0952 (9)
F30.9452 (5)0.03466 (17)0.25818 (16)0.1194 (13)
F40.7309 (5)0.1022 (2)0.21044 (15)0.1376 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co0.0281 (2)0.02278 (19)0.0343 (2)0.00121 (16)0.00333 (16)0.00146 (17)
S10.0298 (4)0.0249 (4)0.0470 (5)−0.0036 (3)0.0017 (3)0.0067 (3)
S20.0272 (4)0.0250 (4)0.0502 (5)−0.0023 (3)0.0017 (3)0.0057 (3)
S30.0340 (4)0.0307 (4)0.0428 (5)0.0030 (3)0.0074 (3)−0.0053 (3)
S40.0285 (4)0.0332 (4)0.0396 (4)0.0043 (3)0.0032 (3)−0.0035 (3)
N10.0299 (13)0.0264 (12)0.0297 (13)−0.0001 (10)0.0025 (10)0.0002 (10)
N20.0306 (13)0.0284 (13)0.0294 (13)0.0003 (10)0.0001 (10)0.0027 (10)
N30.0284 (13)0.0289 (13)0.0526 (17)−0.0021 (10)−0.0012 (12)0.0097 (12)
N40.0423 (16)0.0350 (14)0.0433 (16)0.0025 (12)−0.0014 (13)−0.0070 (12)
C10.0387 (17)0.0347 (16)0.0355 (17)0.0014 (13)0.0086 (14)0.0015 (14)
C20.0456 (19)0.0361 (17)0.0407 (19)−0.0025 (14)0.0093 (15)0.0087 (15)
C30.0386 (18)0.0262 (15)0.0469 (19)−0.0030 (13)0.0045 (15)0.0074 (14)
C40.0278 (15)0.0261 (14)0.0384 (17)−0.0004 (11)−0.0014 (13)−0.0004 (13)
C50.0340 (17)0.0218 (14)0.052 (2)−0.0013 (12)0.0013 (14)−0.0027 (14)
C60.0373 (17)0.0304 (16)0.0441 (19)0.0002 (13)0.0030 (14)−0.0093 (14)
C70.0290 (16)0.0328 (15)0.0333 (17)−0.0006 (12)−0.0001 (13)−0.0030 (13)
C80.0390 (18)0.0471 (19)0.0328 (18)0.0015 (15)0.0021 (14)−0.0047 (15)
C90.0430 (19)0.053 (2)0.0271 (16)−0.0004 (15)0.0023 (14)0.0070 (15)
C100.0385 (18)0.0377 (17)0.0339 (17)0.0004 (14)0.0006 (14)0.0069 (14)
C110.0252 (14)0.0246 (14)0.0324 (16)0.0008 (11)−0.0024 (12)−0.0036 (12)
C120.0258 (14)0.0265 (14)0.0293 (16)0.0000 (11)0.0002 (12)−0.0003 (12)
C210.0307 (16)0.0233 (14)0.0397 (17)−0.0003 (11)0.0039 (13)−0.0019 (13)
C220.0291 (16)0.0364 (17)0.059 (2)−0.0033 (13)−0.0038 (15)0.0119 (16)
C230.036 (2)0.089 (3)0.118 (4)−0.004 (2)0.018 (2)−0.035 (3)
C240.0381 (18)0.0285 (16)0.064 (2)−0.0036 (13)0.0017 (16)0.0164 (16)
C250.074 (3)0.052 (2)0.062 (3)−0.007 (2)0.015 (2)0.013 (2)
C310.0360 (17)0.0242 (14)0.0381 (17)0.0012 (12)0.0016 (14)0.0002 (13)
C320.065 (2)0.045 (2)0.040 (2)−0.0035 (17)0.0006 (17)−0.0140 (16)
C330.098 (4)0.071 (3)0.049 (2)−0.013 (3)0.009 (2)−0.002 (2)
C340.045 (2)0.063 (2)0.060 (2)0.0132 (18)−0.0192 (18)−0.022 (2)
C350.043 (2)0.075 (3)0.134 (5)−0.010 (2)0.018 (3)−0.037 (3)
B0.058 (3)0.041 (2)0.037 (2)0.0036 (19)0.0057 (19)−0.0055 (18)
F10.100 (2)0.102 (2)0.0643 (16)−0.0059 (16)0.0286 (15)−0.0340 (15)
F20.091 (2)0.0754 (18)0.123 (2)−0.0163 (15)0.0321 (18)0.0104 (17)
F30.179 (3)0.0618 (17)0.129 (3)0.0507 (19)0.080 (3)0.0205 (17)
F40.178 (3)0.130 (3)0.090 (2)−0.036 (3)−0.070 (2)−0.003 (2)

Geometric parameters (Å, °)

Co—S12.2805 (8)C8—C91.367 (5)
Co—S22.2432 (8)C8—H8A0.9400
Co—S32.2590 (9)C9—C101.400 (4)
Co—S42.2658 (8)C9—H9A0.9400
Co—N11.989 (2)C10—H10A0.9400
Co—N21.991 (2)C11—C121.419 (4)
S1—C211.726 (3)C22—C231.499 (5)
S2—C211.719 (3)C22—H22A0.9800
S3—C311.720 (3)C22—H22B0.9800
S4—C311.722 (3)C23—H23A0.9700
N1—C11.332 (4)C23—H23B0.9700
N1—C121.369 (3)C23—H23C0.9700
N2—C101.335 (4)C24—C251.505 (5)
N2—C111.375 (3)C24—H24A0.9800
N3—C211.319 (4)C24—H24B0.9800
N3—C221.477 (4)C25—H25A0.9700
N3—C241.480 (4)C25—H25B0.9700
N4—C311.315 (4)C25—H25C0.9700
N4—C321.468 (4)C32—C331.524 (5)
N4—C341.475 (4)C32—H32A0.9800
C1—C21.407 (4)C32—H32B0.9800
C1—H1A0.9400C33—H33A0.9700
C2—C31.367 (4)C33—H33B0.9700
C2—H2A0.9400C33—H33C0.9700
C3—C41.407 (4)C34—C351.512 (6)
C3—H3A0.9400C34—H34A0.9800
C4—C121.409 (4)C34—H34B0.9800
C4—C51.437 (4)C35—H35A0.9700
C5—C61.351 (4)C35—H35B0.9700
C5—H5A0.9400C35—H35C0.9700
C6—C71.442 (4)B—F41.333 (5)
C6—H6A0.9400B—F31.357 (5)
C7—C111.403 (4)B—F11.357 (5)
C7—C81.406 (4)B—F21.369 (5)
N1—Co—N282.86 (9)N1—C12—C4123.1 (3)
N1—Co—S2171.16 (7)N1—C12—C11116.7 (2)
N2—Co—S294.35 (7)C4—C12—C11120.2 (3)
N1—Co—S393.48 (7)N3—C21—S2125.5 (2)
N2—Co—S3165.93 (7)N3—C21—S1125.6 (2)
S2—Co—S391.18 (3)S2—C21—S1108.88 (16)
N1—Co—S493.98 (7)N3—C22—C23111.1 (3)
N2—Co—S489.75 (7)N3—C22—H22A109.4
S2—Co—S494.39 (3)C23—C22—H22A109.4
S3—Co—S476.91 (3)N3—C22—H22B109.4
N1—Co—S195.48 (7)C23—C22—H22B109.4
N2—Co—S197.99 (7)H22A—C22—H22B108.0
S2—Co—S176.56 (3)C22—C23—H23A109.5
S3—Co—S195.87 (3)C22—C23—H23B109.5
S4—Co—S1168.45 (3)H23A—C23—H23B109.5
C21—S1—Co86.45 (10)C22—C23—H23C109.5
C21—S2—Co87.84 (10)H23A—C23—H23C109.5
C31—S3—Co86.73 (11)H23B—C23—H23C109.5
C31—S4—Co86.48 (10)N3—C24—C25112.6 (3)
C1—N1—C12117.9 (2)N3—C24—H24A109.1
C1—N1—Co130.1 (2)C25—C24—H24A109.1
C12—N1—Co112.05 (18)N3—C24—H24B109.1
C10—N2—C11117.3 (3)C25—C24—H24B109.1
C10—N2—Co130.0 (2)H24A—C24—H24B107.8
C11—N2—Co112.17 (19)C24—C25—H25A109.5
C21—N3—C22121.6 (2)C24—C25—H25B109.5
C21—N3—C24121.0 (2)H25A—C25—H25B109.5
C22—N3—C24117.3 (2)C24—C25—H25C109.5
C31—N4—C32121.9 (3)H25A—C25—H25C109.5
C31—N4—C34120.5 (3)H25B—C25—H25C109.5
C32—N4—C34117.6 (3)N4—C31—S3125.8 (2)
N1—C1—C2122.4 (3)N4—C31—S4124.5 (2)
N1—C1—H1A118.8S3—C31—S4109.69 (17)
C2—C1—H1A118.8N4—C32—C33111.9 (3)
C3—C2—C1119.9 (3)N4—C32—H32A109.2
C3—C2—H2A120.1C33—C32—H32A109.2
C1—C2—H2A120.1N4—C32—H32B109.2
C2—C3—C4119.6 (3)C33—C32—H32B109.2
C2—C3—H3A120.2H32A—C32—H32B107.9
C4—C3—H3A120.2C32—C33—H33A109.5
C3—C4—C12117.2 (3)C32—C33—H33B109.5
C3—C4—C5124.8 (3)H33A—C33—H33B109.5
C12—C4—C5118.1 (3)C32—C33—H33C109.5
C6—C5—C4121.6 (3)H33A—C33—H33C109.5
C6—C5—H5A119.2H33B—C33—H33C109.5
C4—C5—H5A119.2N4—C34—C35112.0 (3)
C5—C6—C7121.3 (3)N4—C34—H34A109.2
C5—C6—H6A119.4C35—C34—H34A109.2
C7—C6—H6A119.4N4—C34—H34B109.2
C11—C7—C8117.6 (3)C35—C34—H34B109.2
C11—C7—C6117.9 (3)H34A—C34—H34B107.9
C8—C7—C6124.5 (3)C34—C35—H35A109.5
C9—C8—C7118.9 (3)C34—C35—H35B109.5
C9—C8—H8A120.5H35A—C35—H35B109.5
C7—C8—H8A120.5C34—C35—H35C109.5
C8—C9—C10120.4 (3)H35A—C35—H35C109.5
C8—C9—H9A119.8H35B—C35—H35C109.5
C10—C9—H9A119.8F4—B—F3110.3 (4)
N2—C10—C9122.5 (3)F4—B—F1110.0 (4)
N2—C10—H10A118.8F3—B—F1108.6 (3)
C9—C10—H10A118.8F4—B—F2109.5 (4)
N2—C11—C7123.2 (3)F3—B—F2110.0 (4)
N2—C11—C12115.8 (2)F1—B—F2108.4 (3)
C7—C11—C12121.0 (3)
N1—Co—S1—C21−172.69 (12)C6—C7—C8—C9−177.9 (3)
N2—Co—S1—C21−89.16 (12)C7—C8—C9—C10−1.3 (5)
S2—Co—S1—C213.43 (10)C11—N2—C10—C90.0 (4)
S3—Co—S1—C2193.23 (10)Co—N2—C10—C9171.2 (2)
S4—Co—S1—C2142.5 (2)C8—C9—C10—N21.0 (5)
N2—Co—S2—C2193.75 (12)C10—N2—C11—C7−0.8 (4)
S3—Co—S2—C21−99.20 (10)Co—N2—C11—C7−173.5 (2)
S4—Co—S2—C21−176.16 (10)C10—N2—C11—C12178.4 (2)
S1—Co—S2—C21−3.44 (10)Co—N2—C11—C125.7 (3)
N1—Co—S3—C3190.50 (12)C8—C7—C11—N20.6 (4)
N2—Co—S3—C3116.2 (3)C6—C7—C11—N2179.1 (3)
S2—Co—S3—C31−97.02 (10)C8—C7—C11—C12−178.6 (3)
S4—Co—S3—C31−2.78 (10)C6—C7—C11—C120.0 (4)
S1—Co—S3—C31−173.62 (10)C1—N1—C12—C4−3.1 (4)
N1—Co—S4—C31−89.87 (12)Co—N1—C12—C4175.6 (2)
N2—Co—S4—C31−172.70 (12)C1—N1—C12—C11178.0 (3)
S2—Co—S4—C3192.96 (10)Co—N1—C12—C11−3.3 (3)
S3—Co—S4—C312.78 (10)C3—C4—C12—N12.5 (4)
S1—Co—S4—C3155.0 (2)C5—C4—C12—N1−177.0 (3)
N2—Co—N1—C1−176.5 (3)C3—C4—C12—C11−178.6 (3)
S3—Co—N1—C117.1 (3)C5—C4—C12—C111.8 (4)
S4—Co—N1—C194.2 (3)N2—C11—C12—N1−1.6 (4)
S1—Co—N1—C1−79.1 (3)C7—C11—C12—N1177.6 (2)
N2—Co—N1—C124.96 (19)N2—C11—C12—C4179.4 (3)
S3—Co—N1—C12−161.39 (18)C7—C11—C12—C4−1.4 (4)
S4—Co—N1—C12−84.29 (18)C22—N3—C21—S2−172.4 (2)
S1—Co—N1—C12102.36 (18)C24—N3—C21—S23.7 (4)
N1—Co—N2—C10−177.3 (3)C22—N3—C21—S18.5 (4)
S2—Co—N2—C1011.1 (3)C24—N3—C21—S1−175.3 (2)
S3—Co—N2—C10−101.7 (4)Co—S2—C21—N3−174.5 (3)
S4—Co—N2—C10−83.3 (3)Co—S2—C21—S14.67 (14)
S1—Co—N2—C1088.1 (3)Co—S1—C21—N3174.6 (3)
N1—Co—N2—C11−5.82 (19)Co—S1—C21—S2−4.60 (14)
S2—Co—N2—C11−177.39 (18)C21—N3—C22—C23110.7 (4)
S3—Co—N2—C1169.8 (4)C24—N3—C22—C23−65.5 (4)
S4—Co—N2—C1188.22 (18)C21—N3—C24—C25124.4 (3)
S1—Co—N2—C11−100.38 (18)C22—N3—C24—C25−59.4 (4)
C12—N1—C1—C21.5 (4)C32—N4—C31—S31.8 (4)
Co—N1—C1—C2−176.9 (2)C34—N4—C31—S3−179.5 (3)
N1—C1—C2—C30.5 (5)C32—N4—C31—S4−178.0 (2)
C1—C2—C3—C4−1.1 (5)C34—N4—C31—S40.7 (4)
C2—C3—C4—C12−0.4 (4)Co—S3—C31—N4−176.0 (3)
C2—C3—C4—C5179.2 (3)Co—S3—C31—S43.78 (13)
C3—C4—C5—C6179.5 (3)Co—S4—C31—N4176.0 (3)
C12—C4—C5—C6−1.0 (4)Co—S4—C31—S3−3.77 (13)
C4—C5—C6—C7−0.4 (5)C31—N4—C32—C3393.6 (4)
C5—C6—C7—C110.9 (4)C34—N4—C32—C33−85.1 (4)
C5—C6—C7—C8179.4 (3)C31—N4—C34—C3589.0 (4)
C11—C7—C8—C90.5 (4)C32—N4—C34—C35−92.2 (4)

Table 2 C-H···F contacts in (I) (Å, deg)

D-HAD-HH···AD···AD-H..A
C10-H10AF1i0.942.313.169 (4)151.2
C2-H2AF2ii0.942.433.281 (4)150.9
C6-H6AF4iv0.942.443.053 (4)122.9

Symmetry codes (i) x,y,-1+z (ii) -1/2+x,1/2-y,-1/2+z (iii) 1-x,1-y,1-z (iv) 1/2-x,-1/2+y,1/2-z

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2076).

References

  • Bhardwaj, V. K. & Aftab, S. (1990). J. Nepal Chem. Soc.9, 10–15.
  • Deplano, P. & Trogu, E. F. (1982). Inorg. Chim. Acta, 61, 261–264.
  • Deplano, P., Trogu, E. F. & Lai, A. (1983). Inorg. Chim. Acta, 68, 147–152.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hendrickson, A. R., Martin, R. L. & Taylor, D. (1975). J. Chem. Soc. Dalton Trans pp. 2183–2187.
  • Hodgson, M. C., Brothers, P. J., Clark, G. R. & Ware, D. C. (2008). J. Inorg. Biochem.102, 789–797. [PubMed]
  • Holah, D. G. & Murphy, C. N. (1971). Can. J. Chem.49, 2726–2732.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • McCleverty, J. A., McLuckie, S., Morrison, N. J., Bailey, N. A. & Walker, N. W. (1977). J. Chem. Soc. Dalton Trans. pp. 359–365.
  • Okuno, M., Kita, M., Kashiwabara, K. & Fujita, J. (1989). Chem. Lett.18, 1643–1646.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Ware, D. C., Palmer, H. R., Pruijn, F. B., Anderson, R. F., Brothers, P. J., Denny, W. A. & Wilson, W. R. (1998). Anti-Cancer Drug Des.13, 81–103. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography