PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m903.
Published online 2008 June 13. doi:  10.1107/S1600536808013792
PMCID: PMC2961846

{4,4′,6,6′-Tetra­chloro-2,2′-[(spiro­[4.4]nonane-1,6-di­yl)bis­(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}nickel(II)

Abstract

The title compound, [Ni(C23H20Cl4N2O2)], has an NiII ion in a square-planar coordination formed by two imine N and two phenolato O atoms.

Related literature

For related literature, see: Gaetani Manfredotti et al. (1983 [triangle]), de Castro et al. (2001 [triangle]); Lutz (2003 [triangle]); Hoshina et al. (2000 [triangle]); Gosden et al. (1978 [triangle], 1981 [triangle]); Healy & Pletcher (1980 [triangle]); Dahm & Peters (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m903-scheme1.jpg

Experimental

Crystal data

  • [Ni(C23H20Cl4N2O2)]
  • M r = 556.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m903-efi1.jpg
  • a = 13.344 (2) Å
  • b = 12.073 (2) Å
  • c = 14.081 (2) Å
  • β = 97.181 (3)°
  • V = 2250.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 294 (2) K
  • 0.22 × 0.20 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.761, T max = 1.000 (expected range = 0.646–0.849)
  • 20414 measured reflections
  • 5196 independent reflections
  • 3731 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.113
  • S = 1.01
  • 5196 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013792/im2062sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013792/im2062Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars 2005383–10-9, NSFC 20672075 and the Student Innovation Foundation of Sichuan University.

supplementary crystallographic information

Comment

Nickel(II) complexes with N2O2 Schiff base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden et al., 1978, 1981; Healy & Pletcher, 1980). More recently, the preparation of metal-salen based modified electrodes by oxidative electropolymerization of the metal complexes prompted their use in heterogenous electrocatalysis (Dahm & Peters, 1996). Work in our laboratory has attempted to introduce spiro[4.4]nonane-1,6-diamine as backbone into the salen system and investigate its coordination feature.

The crystal structure of the title compound 1 is shown in Fig. 1, while bond lengths and angles are listed in the supplementary material. As shown in Fig.1, the mononuclear NiII ion is tetra-coordinated, showing a nearly perfectly square-planar coordination mode. The planes Ni1—N1—C10—C11—C12—O1 and Ni1—Ni2—C17—C18—C19—O2 are not coplanar due to the steric pressure of the spirocyclic ligand.

The O—Ni—O, N—Ni—N and N—Ni—O angles correspond very well with the familiar Ni-salen complexes based on 1,2-ethanediamine (Gaetani Manfredotti et al. 1983, Lutz, 2003), 1,2-cyclohexanediamine (Castro et al. 2001), and 1,2- diphenyl-1,2-ethanediamine (Hoshina et al. 2000). de Castro et al. found that the coordination geometry usually is tetrahedrally distorted the more the substituents in the imine bridge are bulkier or if the substitution is asymmetric. Here we attribute the intensive distortion to the spiro frame which reinforces the asymmetry.

A comparison with the three analogous nickel complexes above indicates that, in the present compound, both the Ni—O bonding distances [1.848 (2) / 1.846 (2), respectively] are in good agreement with those observed in similar Schiff base Ni complexes whereas the Ni—N bonding distances [1.892 (2) / 1.884 (2) Å, respectively] are slightly longer [reported values range from 1.843 (2) to 1.855 (2) Å].

Experimental

The title complex, [N,N'-Bis(3,5-dichloro-salicylidene)- spiro[4.4]nonane-1,6-diaminato]-nickel(II), was prepared by the reaction of a hot methanolic solution (30 mL) of nickel(II) acetate tetrahydrate (0.249 g, 1 mmol) with the Schiff base ligand N,N'-Bis(3,5-dichloro-salicylidene)-spiro[4.4]nonane-1,6-diamine (0.500 g, 1 mmol). The resulting green precipitate was collected by filtration and washed with methanol and ether (yield 38%). Dark green crystals of 1 were grown by slow diffusion of ether into a solution of 1 in dichloromethane.

Refinement

All hydrogen atoms of the complex were positioned geometrically and refined using a riding model, with C—H = 0.93 Å (aromatic) and 0.98 Å (methylene) with Uiso(H) =1.2Ueq (C).

Figures

Fig. 1.
A view of complex [Ni(C23H20Cl4N2O2)], with displacement ellipsoids drawn at the 30% probability level.

Crystal data

[Ni(C23H20Cl4N2O2)]F000 = 1136
Mr = 556.92Dx = 1.644 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10509 reflections
a = 13.344 (2) Åθ = 1–27.5º
b = 12.073 (2) ŵ = 1.36 mm1
c = 14.081 (2) ÅT = 294 (2) K
β = 97.181 (3)ºPrism, black
V = 2250.6 (6) Å30.22 × 0.20 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer5196 independent reflections
Radiation source: fine-focus sealed tube3731 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.055
T = 294(2) Kθmax = 27.6º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −17→17
Tmin = 0.761, Tmax = 1.000k = −15→15
20414 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.065P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
5196 reflectionsΔρmax = 0.55 e Å3
289 parametersΔρmin = −0.39 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.42863 (2)0.43913 (3)0.65679 (2)0.02559 (11)
Cl10.10295 (6)0.32950 (8)0.53445 (7)0.0554 (2)
Cl2−0.05657 (6)0.63477 (9)0.75125 (8)0.0661 (3)
Cl30.41217 (6)0.10984 (6)0.47916 (6)0.0453 (2)
Cl40.78080 (7)0.18824 (7)0.37495 (7)0.0568 (2)
O10.29376 (14)0.39968 (17)0.63812 (14)0.0377 (5)
O20.43951 (13)0.32517 (15)0.57124 (13)0.0327 (4)
N10.41147 (15)0.52722 (18)0.76468 (15)0.0276 (5)
N20.55652 (15)0.49892 (17)0.64347 (15)0.0267 (5)
C10.49859 (19)0.5405 (2)0.84037 (18)0.0306 (6)
H1A0.47850.58920.89040.037*
C20.5314 (2)0.4293 (3)0.8853 (2)0.0416 (7)
H2A0.52360.37040.83820.050*
H2B0.49280.41100.93720.050*
C30.6429 (2)0.4480 (3)0.9227 (2)0.0441 (8)
H3A0.65050.49160.98100.053*
H3B0.67860.37840.93440.053*
C40.6798 (2)0.5111 (3)0.8402 (2)0.0410 (7)
H4A0.69440.46050.79020.049*
H4B0.74050.55260.86220.049*
C50.59263 (19)0.5905 (2)0.80250 (18)0.0285 (6)
C60.58053 (19)0.6042 (2)0.69372 (18)0.0274 (5)
H6A0.52290.65370.67670.033*
C70.6754 (2)0.6688 (2)0.6779 (2)0.0366 (6)
H7A0.66770.70450.61570.044*
H7B0.73430.62100.68330.044*
C80.6830 (2)0.7548 (3)0.7596 (2)0.0480 (8)
H8A0.65860.82640.73550.058*
H8B0.75250.76270.78860.058*
C90.6165 (2)0.7099 (3)0.8331 (2)0.0431 (7)
H9A0.65260.71240.89730.052*
H9B0.55490.75290.83170.052*
C100.32576 (19)0.5653 (2)0.78429 (19)0.0295 (6)
H10A0.32730.61230.83680.035*
C110.22883 (19)0.5419 (2)0.73250 (19)0.0302 (6)
C120.21902 (19)0.4569 (2)0.66395 (19)0.0304 (6)
C130.1189 (2)0.4320 (2)0.6213 (2)0.0367 (6)
C140.0362 (2)0.4869 (3)0.6479 (2)0.0421 (7)
H14A−0.02850.46920.61930.051*
C150.0498 (2)0.5684 (3)0.7173 (2)0.0397 (7)
C160.1439 (2)0.5968 (2)0.7601 (2)0.0354 (6)
H16A0.15170.65170.80680.043*
C170.6168 (2)0.4638 (2)0.58462 (18)0.0290 (6)
H17A0.67170.50850.57570.035*
C180.6061 (2)0.3617 (2)0.53205 (18)0.0280 (6)
C190.51800 (19)0.2961 (2)0.53137 (18)0.0278 (5)
C200.5172 (2)0.1946 (2)0.4804 (2)0.0321 (6)
C210.5954 (2)0.1621 (2)0.4321 (2)0.0355 (6)
H21A0.59210.09550.39880.043*
C220.6801 (2)0.2305 (2)0.4335 (2)0.0359 (6)
C230.6860 (2)0.3287 (2)0.48250 (19)0.0324 (6)
H23A0.74280.37340.48290.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02081 (18)0.02942 (19)0.02673 (19)0.00060 (13)0.00379 (13)−0.00226 (14)
Cl10.0407 (4)0.0607 (6)0.0629 (5)−0.0066 (4)−0.0008 (4)−0.0221 (4)
Cl20.0264 (4)0.0838 (7)0.0887 (7)0.0125 (4)0.0095 (4)−0.0225 (6)
Cl30.0416 (4)0.0319 (4)0.0620 (5)−0.0045 (3)0.0044 (4)−0.0038 (3)
Cl40.0631 (5)0.0467 (5)0.0688 (6)0.0084 (4)0.0402 (5)−0.0077 (4)
O10.0227 (10)0.0430 (11)0.0477 (12)−0.0003 (8)0.0057 (8)−0.0123 (9)
O20.0251 (9)0.0325 (10)0.0416 (11)−0.0006 (8)0.0077 (8)−0.0089 (8)
N10.0216 (11)0.0342 (12)0.0274 (11)−0.0005 (9)0.0044 (9)0.0002 (9)
N20.0244 (11)0.0294 (12)0.0262 (11)0.0014 (9)0.0030 (9)0.0002 (9)
C10.0239 (13)0.0420 (16)0.0258 (13)0.0021 (11)0.0023 (10)−0.0030 (11)
C20.0359 (16)0.0485 (18)0.0393 (17)−0.0031 (13)0.0006 (13)0.0122 (14)
C30.0333 (16)0.059 (2)0.0385 (17)0.0051 (14)−0.0034 (13)0.0139 (15)
C40.0268 (15)0.0538 (19)0.0418 (17)0.0066 (13)0.0012 (12)0.0058 (15)
C50.0217 (12)0.0345 (15)0.0287 (14)0.0004 (10)0.0003 (10)−0.0017 (11)
C60.0236 (13)0.0274 (13)0.0308 (14)−0.0008 (10)0.0020 (10)−0.0008 (11)
C70.0332 (15)0.0364 (16)0.0406 (16)−0.0072 (12)0.0065 (12)0.0014 (13)
C80.0472 (19)0.0435 (18)0.054 (2)−0.0134 (15)0.0088 (15)−0.0082 (15)
C90.0445 (18)0.0451 (18)0.0392 (17)−0.0112 (14)0.0030 (13)−0.0129 (14)
C100.0271 (13)0.0315 (14)0.0306 (14)0.0006 (11)0.0059 (11)−0.0010 (11)
C110.0232 (13)0.0360 (15)0.0323 (14)0.0008 (11)0.0067 (11)0.0031 (11)
C120.0239 (13)0.0332 (15)0.0350 (15)−0.0011 (11)0.0069 (11)0.0024 (12)
C130.0312 (15)0.0387 (16)0.0393 (16)−0.0040 (12)0.0007 (12)−0.0018 (13)
C140.0224 (14)0.0531 (19)0.0500 (18)−0.0021 (13)0.0015 (12)−0.0004 (15)
C150.0233 (14)0.0472 (18)0.0493 (18)0.0057 (12)0.0077 (12)0.0011 (14)
C160.0306 (15)0.0394 (16)0.0368 (16)0.0069 (12)0.0067 (12)0.0010 (12)
C170.0269 (13)0.0313 (14)0.0292 (14)−0.0031 (11)0.0055 (11)0.0014 (11)
C180.0301 (14)0.0283 (14)0.0259 (13)0.0054 (11)0.0043 (11)0.0020 (11)
C190.0284 (13)0.0278 (13)0.0275 (13)0.0039 (11)0.0042 (11)0.0019 (11)
C200.0324 (14)0.0295 (14)0.0339 (15)0.0015 (11)0.0017 (11)0.0028 (11)
C210.0465 (17)0.0272 (14)0.0338 (15)0.0060 (13)0.0093 (13)0.0000 (12)
C220.0398 (16)0.0356 (16)0.0348 (15)0.0108 (13)0.0146 (12)0.0024 (12)
C230.0325 (15)0.0343 (15)0.0321 (15)0.0014 (12)0.0109 (12)0.0052 (12)

Geometric parameters (Å, °)

Ni1—O21.8463 (18)C6—H6A0.9800
Ni1—O11.8484 (19)C7—C81.544 (4)
Ni1—N21.884 (2)C7—H7A0.9700
Ni1—N11.892 (2)C7—H7B0.9700
Cl1—C131.734 (3)C8—C91.544 (4)
Cl2—C151.747 (3)C8—H8A0.9700
Cl3—C201.733 (3)C8—H8B0.9700
Cl4—C221.739 (3)C9—H9A0.9700
O1—C121.302 (3)C9—H9B0.9700
O2—C191.297 (3)C10—C111.432 (4)
N1—C101.294 (3)C10—H10A0.9300
N1—C11.484 (3)C11—C121.403 (4)
N2—C171.296 (3)C11—C161.409 (4)
N2—C61.470 (3)C12—C131.426 (4)
C1—C21.525 (4)C13—C141.379 (4)
C1—C51.546 (4)C14—C151.383 (4)
C1—H1A0.9800C14—H14A0.9300
C2—C31.532 (4)C15—C161.366 (4)
C2—H2A0.9700C16—H16A0.9300
C2—H2B0.9700C17—C181.436 (4)
C3—C41.522 (4)C17—H17A0.9300
C3—H3A0.9700C18—C231.403 (4)
C3—H3B0.9700C18—C191.416 (4)
C4—C51.548 (4)C19—C201.420 (4)
C4—H4A0.9700C20—C211.372 (4)
C4—H4B0.9700C21—C221.397 (4)
C5—C91.527 (4)C21—H21A0.9300
C5—C61.529 (4)C22—C231.368 (4)
C6—C71.526 (4)C23—H23A0.9300
O2—Ni1—O182.52 (8)H7A—C7—H7B109.2
O2—Ni1—N294.27 (8)C7—C8—C9105.9 (2)
O1—Ni1—N2164.28 (9)C7—C8—H8A110.6
O2—Ni1—N1165.98 (9)C9—C8—H8A110.6
O1—Ni1—N192.62 (9)C7—C8—H8B110.6
N2—Ni1—N193.82 (9)C9—C8—H8B110.6
C12—O1—Ni1126.14 (18)H8A—C8—H8B108.7
C19—O2—Ni1128.15 (17)C5—C9—C8105.0 (2)
C10—N1—C1116.2 (2)C5—C9—H9A110.7
C10—N1—Ni1124.76 (18)C8—C9—H9A110.7
C1—N1—Ni1118.34 (16)C5—C9—H9B110.7
C17—N2—C6118.3 (2)C8—C9—H9B110.7
C17—N2—Ni1125.51 (19)H9A—C9—H9B108.8
C6—N2—Ni1115.40 (15)N1—C10—C11126.0 (3)
N1—C1—C2111.2 (2)N1—C10—H10A117.0
N1—C1—C5113.0 (2)C11—C10—H10A117.0
C2—C1—C5106.5 (2)C12—C11—C16121.6 (2)
N1—C1—H1A108.7C12—C11—C10119.7 (2)
C2—C1—H1A108.7C16—C11—C10118.2 (3)
C5—C1—H1A108.7O1—C12—C11124.8 (2)
C1—C2—C3103.2 (2)O1—C12—C13118.7 (2)
C1—C2—H2A111.1C11—C12—C13116.5 (2)
C3—C2—H2A111.1C14—C13—C12121.6 (3)
C1—C2—H2B111.1C14—C13—Cl1120.2 (2)
C3—C2—H2B111.1C12—C13—Cl1118.3 (2)
H2A—C2—H2B109.1C13—C14—C15119.7 (3)
C4—C3—C2101.8 (2)C13—C14—H14A120.2
C4—C3—H3A111.4C15—C14—H14A120.2
C2—C3—H3A111.4C16—C15—C14121.5 (3)
C4—C3—H3B111.4C16—C15—Cl2119.8 (2)
C2—C3—H3B111.4C14—C15—Cl2118.7 (2)
H3A—C3—H3B109.3C15—C16—C11119.1 (3)
C3—C4—C5105.7 (2)C15—C16—H16A120.4
C3—C4—H4A110.6C11—C16—H16A120.4
C5—C4—H4A110.6N2—C17—C18125.5 (2)
C3—C4—H4B110.6N2—C17—H17A117.3
C5—C4—H4B110.6C18—C17—H17A117.3
H4A—C4—H4B108.7C23—C18—C19121.3 (2)
C9—C5—C699.9 (2)C23—C18—C17117.9 (2)
C9—C5—C1114.9 (2)C19—C18—C17120.9 (2)
C6—C5—C1113.5 (2)O2—C19—C18124.0 (2)
C9—C5—C4111.5 (2)O2—C19—C20119.8 (2)
C6—C5—C4113.0 (2)C18—C19—C20116.1 (2)
C1—C5—C4104.4 (2)C21—C20—C19122.6 (3)
N2—C6—C7120.4 (2)C21—C20—Cl3119.4 (2)
N2—C6—C5112.2 (2)C19—C20—Cl3118.0 (2)
C7—C6—C5102.5 (2)C20—C21—C22119.2 (3)
N2—C6—H6A107.0C20—C21—H21A120.4
C7—C6—H6A107.0C22—C21—H21A120.4
C5—C6—H6A107.0C23—C22—C21121.0 (2)
C6—C7—C8102.3 (2)C23—C22—Cl4119.6 (2)
C6—C7—H7A111.3C21—C22—Cl4119.4 (2)
C8—C7—H7A111.3C22—C23—C18119.8 (3)
C6—C7—H7B111.3C22—C23—H23A120.1
C8—C7—H7B111.3C18—C23—H23A120.1
O2—Ni1—O1—C12−167.0 (2)C6—C5—C9—C8−37.3 (3)
N2—Ni1—O1—C12−87.9 (4)C1—C5—C9—C8−159.1 (2)
N1—Ni1—O1—C1226.2 (2)C4—C5—C9—C882.4 (3)
O1—Ni1—O2—C19172.9 (2)C7—C8—C9—C512.0 (3)
N2—Ni1—O2—C198.3 (2)C1—N1—C10—C11−165.9 (3)
N1—Ni1—O2—C19−116.8 (4)Ni1—N1—C10—C114.6 (4)
O2—Ni1—N1—C10−88.5 (4)N1—C10—C11—C1211.5 (4)
O1—Ni1—N1—C10−19.3 (2)N1—C10—C11—C16−175.7 (3)
N2—Ni1—N1—C10146.4 (2)Ni1—O1—C12—C11−18.5 (4)
O2—Ni1—N1—C181.9 (4)Ni1—O1—C12—C13162.3 (2)
O1—Ni1—N1—C1151.08 (19)C16—C11—C12—O1−177.0 (3)
N2—Ni1—N1—C1−43.26 (19)C10—C11—C12—O1−4.5 (4)
O2—Ni1—N2—C174.1 (2)C16—C11—C12—C132.2 (4)
O1—Ni1—N2—C17−73.4 (4)C10—C11—C12—C13174.7 (2)
N1—Ni1—N2—C17172.7 (2)O1—C12—C13—C14177.7 (3)
O2—Ni1—N2—C6174.05 (17)C11—C12—C13—C14−1.5 (4)
O1—Ni1—N2—C696.6 (4)O1—C12—C13—Cl1−2.0 (4)
N1—Ni1—N2—C6−17.40 (18)C11—C12—C13—Cl1178.8 (2)
C10—N1—C1—C2109.6 (3)C12—C13—C14—C150.2 (5)
Ni1—N1—C1—C2−61.6 (3)Cl1—C13—C14—C15179.9 (2)
C10—N1—C1—C5−130.8 (2)C13—C14—C15—C160.5 (5)
Ni1—N1—C1—C558.1 (3)C13—C14—C15—Cl2−178.8 (2)
N1—C1—C2—C3154.6 (2)C14—C15—C16—C110.2 (5)
C5—C1—C2—C331.1 (3)Cl2—C15—C16—C11179.5 (2)
C1—C2—C3—C4−42.6 (3)C12—C11—C16—C15−1.6 (4)
C2—C3—C4—C538.5 (3)C10—C11—C16—C15−174.2 (3)
N1—C1—C5—C9107.9 (3)C6—N2—C17—C18178.2 (2)
C2—C1—C5—C9−129.7 (3)Ni1—N2—C17—C18−12.2 (4)
N1—C1—C5—C6−6.2 (3)N2—C17—C18—C23−170.7 (2)
C2—C1—C5—C6116.1 (3)N2—C17—C18—C198.5 (4)
N1—C1—C5—C4−129.7 (2)Ni1—O2—C19—C18−13.3 (4)
C2—C1—C5—C4−7.4 (3)Ni1—O2—C19—C20169.04 (18)
C3—C4—C5—C9105.1 (3)C23—C18—C19—O2−176.0 (2)
C3—C4—C5—C6−143.2 (2)C17—C18—C19—O24.8 (4)
C3—C4—C5—C1−19.4 (3)C23—C18—C19—C201.8 (4)
C17—N2—C6—C7−1.1 (4)C17—C18—C19—C20−177.4 (2)
Ni1—N2—C6—C7−171.80 (19)O2—C19—C20—C21176.2 (2)
C17—N2—C6—C5−121.8 (2)C18—C19—C20—C21−1.7 (4)
Ni1—N2—C6—C567.5 (2)O2—C19—C20—Cl3−3.3 (3)
C9—C5—C6—N2179.9 (2)C18—C19—C20—Cl3178.82 (19)
C1—C5—C6—N2−57.2 (3)C19—C20—C21—C220.7 (4)
C4—C5—C6—N261.4 (3)Cl3—C20—C21—C22−179.8 (2)
C9—C5—C6—C749.4 (3)C20—C21—C22—C230.2 (4)
C1—C5—C6—C7172.2 (2)C20—C21—C22—Cl4178.4 (2)
C4—C5—C6—C7−69.2 (3)C21—C22—C23—C18−0.1 (4)
N2—C6—C7—C8−167.4 (2)Cl4—C22—C23—C18−178.3 (2)
C5—C6—C7—C8−42.0 (3)C19—C18—C23—C22−1.0 (4)
C6—C7—C8—C918.2 (3)C17—C18—C23—C22178.3 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2062).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castro, B. de, Freire, C., Duarte, M. T., Minas da Piedade, M. F. & Santos, I. C. (2001). Acta Cryst. C57, 370–372. [PubMed]
  • Dahm, C. E. & Peters, D. G. (1996). J. Electroanal. Chem. Interfac. Electrochem, 406, 119–121.
  • Gaetani Manfredotti, A. & Guastini, C. (1983). Acta Cryst. C39, 863–865.
  • Gosden, C., Healy, K. P. & Pletcher, D. (1978). J. Chem. Soc. Dalton Trans. pp. 972–976.
  • Gosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfac. Electrochem.117, 101–107.
  • Healy, K. P. & Pletcher, D. (1980). J. Organomet. Chem.186, 401–409.
  • Hoshina, G., Tsuchimoto, M. & Ohba, S. (2000). Acta Cryst. C56, e122. [PubMed]
  • Lutz, M. (2003). Acta Cryst. E59, m950–m952.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography