PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1352.
Published online 2008 June 28. doi:  10.1107/S1600536808018837
PMCID: PMC2961844

4,4′-Dimethyl-2,2′-[(3-aza­pentane-1,5-di­yl)bis­(nitrilo­methyl­idyne)]diphenol

Abstract

In the crystal structure of the title Schiff base, C20H25N3O2, the salicylaldimine groups at each end of the mol­ecule are essentially planar and make a dihedral angle of 84.94 (3)° with each other. There are strong intra­molecular O—H(...)N hydrogen bonds and a weak inter­molecular N—H(...)O hydrogen bond.

Related literature

For related literature, see: Rodriguez de Barbarin et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1352-scheme1.jpg

Experimental

Crystal data

  • C20H25N3O2
  • M r = 339.43
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1352-efi1.jpg
  • a = 9.132 (4) Å
  • b = 5.834 (3) Å
  • c = 34.365 (16) Å
  • V = 1830.8 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 (2) K
  • 0.34 × 0.32 × 0.28 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.970, T max = 0.981
  • 14593 measured reflections
  • 2125 independent reflections
  • 1867 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.108
  • S = 1.07
  • 2125 reflections
  • 228 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018837/is2306sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018837/is2306Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Starting Fund for the Doctoral Program of Xi’an University of Architecture & Technology (DB12051) for financial support.

supplementary crystallographic information

Comment

It was reported that zinc coordinated by phenolate groups in a Schiff-base ligand can act as a nucleophile to catalyze ester hydrolysis (Rodriguez de Barbarin et al., 1994). These results promoted us to investigate linear amine-phenol ligands obtained by reducing Schiff bases, which have greater flexibility, better water solubility and more inertness to hydrolytic decomposition than corresponding Schiff bases. While a number of their complexes with transition metals and main group metals have been reported, the crystal structures of these Schiff-base ligands remain relatively unexplored. So we present here the crystal structure of the title compound, N,N'-bis(5-methylsalicylidene)-1,5-diamino-3-azapentane, (I).

The molecular structure of (I) is illustrated in Fig. 1. Compound (I) is a typical salicylaldehyde schiff derivative with normal geometric parameters. The two pendant moieties attached to the ends of the C—C—N—C—C backbone adopt a cis conformation. The N3 atom exhibits tetrahedral sp3 hybridization, whereas the two amide N atoms display planar sp2 hybridization. The C8—N1 and C13—N2 bonds show the expected double-bond character. In our case, the salicylaldimine moiety is nearly planar. The dihedral angle between the salicylaldimine groups is 84.94 (3)°. The crystal structure of (I) is stabilized by intramolecular O—H···N hydrogen bonds and an intermolecular N—H···O hydrogen bond (Table 1).

Experimental

N-(2-aminoethyl)ethane-1,2-diamine (0.01 mol, 1.03 g) and 2-hydroxy-5-methylbenzaldehyde (0.02 mol, 2.72 g) were dissolved in ethanol and the solution was refluxed for 1 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product. Yield: 80.5%. Calcd. for C20H25N3O2: C 70.77, H 7.42, N 12.38; Found: C 71.02, H 7.47, N 12.27%.

Refinement

All H atoms were located from a difference Fourier map. Then H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å, O—H = 0.82 Å and N—H = 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C20H25N3O2F000 = 728
Mr = 339.43Dx = 1.231 Mg m3
Orthorhombic, Pca21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2105 reflections
a = 9.132 (4) Åθ = 1.0–27.5º
b = 5.834 (3) ŵ = 0.08 mm1
c = 34.365 (16) ÅT = 296 (2) K
V = 1830.8 (15) Å3Block, yellow
Z = 40.34 × 0.32 × 0.28 mm

Data collection

Bruker APEXII area-detector diffractometer2125 independent reflections
Radiation source: fine-focus sealed tube1867 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 296(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.970, Tmax = 0.981k = −7→7
14593 measured reflectionsl = −44→44

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0588P)2 + 0.2052P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2125 reflectionsΔρmax = 0.15 e Å3
228 parametersΔρmin = −0.18 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8321 (3)1.4932 (4)0.36346 (6)0.0766 (7)
H1A0.88621.41810.34930.115*
O20.7661 (2)0.0213 (3)0.18913 (5)0.0594 (5)
H2A0.83050.09600.19990.089*
N11.0105 (2)1.1600 (4)0.34511 (6)0.0506 (5)
N20.9202 (2)0.3855 (3)0.20445 (5)0.0479 (4)
N31.0062 (2)0.7202 (3)0.29474 (6)0.0520 (5)
H3A1.02100.65830.31710.062*
C10.8251 (3)1.0370 (4)0.43648 (7)0.0455 (5)
H1C0.86860.89600.44160.055*
C20.6782 (4)0.9888 (6)0.49830 (9)0.0762 (9)
H2B0.75440.88300.50510.114*
H2C0.58950.90590.49310.114*
H2D0.66221.09330.51950.114*
C30.7226 (3)1.1209 (4)0.46259 (7)0.0495 (6)
C40.6605 (3)1.3338 (5)0.45429 (7)0.0545 (6)
H4A0.59231.39470.47150.065*
C50.6967 (3)1.4566 (4)0.42153 (8)0.0563 (6)
H5A0.65261.59770.41700.068*
C60.7992 (3)1.3710 (4)0.39506 (7)0.0487 (5)
C70.8657 (2)1.1551 (4)0.40291 (6)0.0399 (5)
C80.9752 (2)1.0605 (4)0.37676 (7)0.0437 (5)
H8A1.02080.92330.38330.052*
C91.1263 (3)1.0645 (5)0.32037 (7)0.0584 (7)
H9A1.18360.95600.33540.070*
H9B1.19111.18710.31220.070*
C101.0648 (3)0.9444 (4)0.28455 (7)0.0532 (6)
H10A0.98791.03760.27320.064*
H10B1.14160.92660.26530.064*
C110.9210 (3)0.6085 (4)0.26450 (6)0.0472 (5)
H11A0.84770.71520.25500.057*
H11B0.86980.47880.27580.057*
C121.0123 (3)0.5243 (5)0.23003 (7)0.0521 (6)
H12A1.05100.65430.21580.063*
H12B1.09400.43350.23940.063*
C130.8784 (3)0.4705 (4)0.17204 (7)0.0441 (5)
H13A0.91250.61430.16470.053*
C140.7784 (2)0.3473 (3)0.14626 (6)0.0412 (5)
C150.7306 (3)0.4500 (4)0.11167 (7)0.0466 (5)
H15A0.76830.59250.10480.056*
C160.5766 (4)0.4651 (6)0.05050 (9)0.0746 (8)
H16A0.47340.43990.04740.112*
H16B0.62790.40360.02850.112*
H16C0.59550.62660.05240.112*
C170.6291 (3)0.3464 (4)0.08737 (7)0.0519 (6)
C180.5756 (3)0.1310 (4)0.09836 (8)0.0562 (6)
H18A0.50740.05820.08250.067*
C190.6215 (3)0.0237 (4)0.13212 (8)0.0534 (6)
H19A0.5838−0.11930.13870.064*
C200.7242 (3)0.1288 (4)0.15635 (7)0.0448 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0892 (16)0.0680 (11)0.0725 (13)0.0077 (11)0.0161 (12)0.0338 (10)
O20.0733 (12)0.0477 (9)0.0574 (10)0.0009 (8)0.0025 (9)0.0103 (8)
N10.0448 (10)0.0629 (12)0.0440 (10)−0.0085 (9)0.0049 (8)−0.0061 (9)
N20.0467 (10)0.0535 (11)0.0434 (10)0.0017 (9)0.0034 (9)−0.0054 (9)
N30.0551 (11)0.0628 (12)0.0381 (9)−0.0069 (10)−0.0017 (9)0.0057 (9)
C10.0484 (13)0.0446 (11)0.0435 (12)0.0005 (9)−0.0054 (10)0.0057 (9)
C20.091 (2)0.085 (2)0.0526 (15)−0.0057 (18)0.0175 (17)0.0134 (15)
C30.0516 (14)0.0570 (13)0.0400 (12)−0.0081 (11)0.0041 (10)0.0013 (10)
C40.0518 (14)0.0562 (14)0.0554 (14)−0.0016 (11)0.0111 (11)−0.0116 (11)
C50.0554 (15)0.0471 (12)0.0664 (16)0.0058 (11)0.0051 (13)0.0010 (11)
C60.0491 (13)0.0460 (12)0.0511 (12)−0.0032 (10)−0.0004 (10)0.0066 (10)
C70.0378 (11)0.0429 (10)0.0391 (11)−0.0038 (8)−0.0007 (9)−0.0001 (8)
C80.0377 (11)0.0502 (12)0.0432 (11)−0.0037 (9)−0.0034 (9)−0.0039 (9)
C90.0437 (13)0.0815 (17)0.0501 (13)−0.0115 (13)0.0066 (11)−0.0145 (13)
C100.0551 (14)0.0640 (14)0.0405 (12)−0.0100 (11)0.0078 (11)−0.0025 (11)
C110.0450 (12)0.0540 (12)0.0427 (12)−0.0070 (10)0.0053 (10)−0.0001 (10)
C120.0410 (11)0.0667 (14)0.0487 (13)0.0014 (11)0.0006 (10)−0.0066 (11)
C130.0424 (11)0.0437 (11)0.0463 (12)−0.0010 (9)0.0062 (9)−0.0030 (9)
C140.0428 (11)0.0384 (10)0.0422 (11)0.0013 (9)0.0085 (9)−0.0041 (9)
C150.0522 (13)0.0417 (11)0.0460 (12)−0.0025 (10)0.0059 (10)−0.0008 (9)
C160.089 (2)0.083 (2)0.0516 (15)−0.0001 (18)−0.0152 (15)0.0008 (14)
C170.0567 (15)0.0551 (13)0.0438 (12)0.0038 (11)0.0019 (11)−0.0057 (10)
C180.0580 (15)0.0545 (14)0.0559 (15)−0.0049 (11)0.0013 (12)−0.0167 (12)
C190.0575 (15)0.0396 (11)0.0632 (15)−0.0071 (10)0.0107 (12)−0.0086 (11)
C200.0494 (12)0.0386 (11)0.0463 (12)0.0021 (9)0.0108 (10)−0.0029 (9)

Geometric parameters (Å, °)

O1—C61.333 (3)C9—H9A0.9700
O1—H1A0.8200C9—H9B0.9700
O2—C201.345 (3)C10—H10A0.9700
O2—H2A0.8200C10—H10B0.9700
N1—C81.274 (3)C11—C121.530 (3)
N1—C91.467 (3)C11—H11A0.9700
N2—C131.277 (3)C11—H11B0.9700
N2—C121.461 (3)C12—H12A0.9700
N3—C111.453 (3)C12—H12B0.9700
N3—C101.456 (3)C13—C141.461 (3)
N3—H3A0.8600C13—H13A0.9300
C1—C31.386 (3)C8—H8A0.9300
C1—C71.394 (3)C14—C151.401 (3)
C1—H1C0.9300C14—C201.411 (3)
C2—C31.505 (4)C15—C171.386 (3)
C2—H2B0.9600C15—H15A0.9300
C2—H2C0.9600C16—C171.521 (4)
C2—H2D0.9600C16—H16A0.9600
C3—C41.395 (4)C16—H16B0.9600
C4—C51.375 (4)C16—H16C0.9600
C4—H4A0.9300C17—C181.400 (4)
C5—C61.397 (3)C18—C191.383 (4)
C5—H5A0.9300C18—H18A0.9300
C6—C71.424 (3)C19—C201.396 (3)
C7—C81.453 (3)C19—H19A0.9300
C9—C101.524 (3)
C6—O1—H1A109.5N3—C11—C12113.95 (19)
C20—O2—H2A109.5N3—C11—H11A108.8
C8—N1—C9120.3 (2)C12—C11—H11A108.8
C13—N2—C12118.8 (2)N3—C11—H11B108.8
C11—N3—C10115.3 (2)C12—C11—H11B108.8
C11—N3—H3A122.3H11A—C11—H11B107.7
C10—N3—H3A122.3N2—C12—C11109.28 (19)
C3—C1—C7122.7 (2)N2—C12—H12A109.8
C3—C1—H1C118.6C11—C12—H12A109.8
C7—C1—H1C118.6N2—C12—H12B109.8
C3—C2—H2B109.5C11—C12—H12B109.8
C3—C2—H2C109.5H12A—C12—H12B108.3
H2B—C2—H2C109.5N2—C13—C14121.6 (2)
C3—C2—H2D109.5N2—C13—H13A119.2
H2B—C2—H2D109.5C14—C13—H13A119.2
H2C—C2—H2D109.5N1—C8—C7121.9 (2)
C1—C3—C4117.2 (2)N1—C8—H8A119.0
C1—C3—C2122.0 (2)C7—C8—H8A119.0
C4—C3—C2120.9 (2)C15—C14—C20119.0 (2)
C5—C4—C3122.3 (2)C15—C14—C13119.9 (2)
C5—C4—H4A118.9C20—C14—C13121.0 (2)
C3—C4—H4A118.9C17—C15—C14122.2 (2)
C4—C5—C6120.5 (2)C17—C15—H15A118.9
C4—C5—H5A119.7C14—C15—H15A118.9
C6—C5—H5A119.7C17—C16—H16A109.5
O1—C6—C5119.4 (2)C17—C16—H16B109.5
O1—C6—C7122.0 (2)H16A—C16—H16B109.5
C5—C6—C7118.6 (2)C17—C16—H16C109.5
C1—C7—C6118.7 (2)H16A—C16—H16C109.5
C1—C7—C8120.4 (2)H16B—C16—H16C109.5
C6—C7—C8120.8 (2)C15—C17—C18117.5 (2)
N1—C9—C10112.2 (2)C15—C17—C16120.9 (2)
N1—C9—H9A109.2C18—C17—C16121.5 (3)
C10—C9—H9A109.2C19—C18—C17121.8 (2)
N1—C9—H9B109.2C19—C18—H18A119.1
C10—C9—H9B109.2C17—C18—H18A119.1
H9A—C9—H9B107.9C18—C19—C20120.3 (2)
N3—C10—C9110.8 (2)C18—C19—H19A119.8
N3—C10—H10A109.5C20—C19—H19A119.8
C9—C10—H10A109.5O2—C20—C19119.1 (2)
N3—C10—H10B109.5O2—C20—C14121.8 (2)
C9—C10—H10B109.5C19—C20—C14119.1 (2)
H10A—C10—H10B108.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.821.892.614 (4)146
O2—H2A···N20.821.882.602 (3)146
N3—H3A···O1i0.862.543.140 (3)128

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2306).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Rodriguez de Barbarin, C. O., Bailey, N. A., Fenton, D. E. & He, Q. (1994). Inorg. Chim. Acta, 219, 205–207.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography