PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1235.
Published online 2008 June 7. doi:  10.1107/S1600536808015055
PMCID: PMC2961842

N,N-Dibenzyl­methane­sulfonamide

Abstract

Mol­ecules of the title compound, C15H17NO2S, which was synthesized from methane­sulfonyl chloride and dibenzyl­amine, are packed in anti­parallel arrays along the c axis, with the methyl group of one mol­ecule dovetailed between the two phenyl rings of the next mol­ecule. Along any such array, the sulfonyl O atoms protrude alternately up and down.

Related literature

For crystallographic literature on sulfonamides such as methane­sulfonamides, see: Gowda et al. (2007 [triangle]). For literature on N,N-dialkyl­methane­sulfonamides, see: van Otterlo et al. (2004 [triangle]). For the synthesis, see: Banks & Hudson (1986 [triangle]); Stretter et al. (1969 [triangle]); Youn & Herrmann (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1235-scheme1.jpg

Experimental

Crystal data

  • C15H17NO2S
  • M r = 275.36
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1235-efi1.jpg
  • a = 6.0948 (1) Å
  • b = 13.4498 (4) Å
  • c = 17.1293 (4) Å
  • V = 1404.15 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 293 (2) K
  • 0.32 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.931, T max = 0.982
  • 8426 measured reflections
  • 3421 independent reflections
  • 2694 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.095
  • S = 1.10
  • 3421 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.29 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1428 Friedel pairs
  • Flack parameter: 0.01 (8)

Data collection: APEX2 (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015055/ng2454sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015055/ng2454Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MD and AJB thank KAIST for financial support.

supplementary crystallographic information

Comment

The title compound (I) was prepared by an established method (Stretter et al., 1969) from dibenzylamine and methanesulfonyl chloride. The last-named compound was prepared unintentionally from methyl sulfide, sulfuryl chloride and acetic acid (Youn and Herrmann, 1986), but with an excess of sulfuryl chloride (1:4:2). With the normal ratio of reactants (1:3:2), methanesulfinyl chloride is the main product. No observation of this kind was reported by the original authors, and indeed, oxidation of disulfides or sulfinyl moeities to sulfonyl moeities generally needs the use of peroxyacids or hydroperoxides.

The molecular structure of (I) (Fig. 1) exhibits no unusual bond lengths or bond angles. The crystal packing of (I) (Fig. 2) shows antiparallel arrays along the c axis, with the S-methyl group occupying the space between the two benzene rings of the next molecule. Along each of these arrays, the oxygen atoms point alternately up and down, and there appears to be some stacking of benzene rings between molecules, along the a and b axes. There is no evidence of hydrogen bonding, but there are weak C14—H14···O1, C7—H7···O2 and C8—H8···N1 interactions (Table 1).

Experimental

Methanesulfonyl chloride was prepared by the method of Youn and Herrmann, but using an excess of sulfuryl chloride (viz. methyl disulfide (0.01 mol), acetic acid (0.02 mol) and sulfuryl chloride (0.04 mol)). The title compound was prepared by the method of Stretter et al., using dibenzylamine (1.5 g, 8 mmol), methanesulfonyl chloride (458 mg, 4 mmol) and dichloromethane (30 ml). The crude product was purified by column chromatography on silica gel using dichloromethane as eluent, giving N,N-dibenzylmethanesulfonamide as white crystals (1.05 g, 96%), mp, 83–85°C. Literature mp. 84–85 oC (Banks & Hudson, 1986).

Crystals were obtained by evaporation of solvent from a solution of (I) in dichoromethane/hexane (1:4).

FTIR (KBr) (cm-1) 3088, 3062, 3009, 1496, 1446, 1438, 1382, 1318, 1265, 1207, 1132, 1091, 1056, 949

1H NMR (400 MHz, CDCl3, p.p.m. with respect to TMS) 7.39–7.29 (m, 10H), 4.35 (s, 4H), 2.77 (s, 3H)

13C NMR (100 MHz, CDCl3, p.p.m. with respect to TMS) 135.4, 128.7, 128.0, 49.8, 40.2

EIMS m/z (%) 275 (M+., 19), 196 (M+. - CH3SO2., 84), 195 (82), 184 (84), 91 (100)

Anal. Calcd. for C15H17NO2S (%): C, 65.45; H, 6.18; N, 5.09; S, 11.63. Found (%): C, 65.22; H, 6.15; N, 5.03; S, 11.80.

Refinement

H atoms were located on a difference Fourier map, positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C).

Figures

Fig. 1.
Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The packing of (I), viewed down the a axis.

Crystal data

C15H17NO2SF000 = 584
Mr = 275.36Dx = 1.303 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3097 reflections
a = 6.0948 (1) Åθ = 3.0–26.3º
b = 13.4498 (4) ŵ = 0.23 mm1
c = 17.1293 (4) ÅT = 293 (2) K
V = 1404.15 (6) Å3Plate, white
Z = 40.32 × 0.10 × 0.08 mm

Data collection

Bruker APEXII diffractometer3421 independent reflections
Radiation source: fine-focus sealed tube2694 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 293(2) Kθmax = 28.3º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→7
Tmin = 0.931, Tmax = 0.982k = −17→15
8426 measured reflectionsl = −18→22

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036  w = 1/[σ2(Fo2) + (0.0517P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.14 e Å3
3421 reflectionsΔρmin = −0.29 e Å3
173 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1428 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.01 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6426 (3)0.26792 (15)0.41616 (10)0.0536 (4)
H10.75400.22080.41920.064*
C20.6736 (4)0.36030 (17)0.44782 (11)0.0659 (6)
H20.80570.37540.47230.079*
C30.5109 (4)0.43099 (17)0.44367 (11)0.0697 (6)
H30.53220.49350.46560.084*
C40.3181 (4)0.40880 (15)0.40713 (12)0.0645 (6)
H40.20820.45660.40360.077*
C50.2856 (3)0.31565 (14)0.37533 (11)0.0518 (5)
H50.15350.30110.35070.062*
C60.4471 (3)0.24390 (13)0.37967 (9)0.0437 (4)
C70.4079 (3)0.14042 (14)0.34963 (10)0.0515 (5)
H7A0.54230.10220.35420.062*
H7B0.29710.10840.38160.062*
C80.3166 (3)0.30315 (13)0.15342 (10)0.0476 (4)
H80.20410.29630.18970.057*
C90.3116 (4)0.38057 (14)0.09996 (11)0.0551 (5)
H90.19670.42600.10100.066*
C100.4744 (4)0.39038 (15)0.04575 (11)0.0614 (5)
H100.46980.44220.00990.074*
C110.6452 (4)0.32373 (16)0.04415 (11)0.0626 (5)
H110.75540.33010.00690.075*
C120.6529 (3)0.24733 (14)0.09789 (10)0.0501 (4)
H120.76980.20290.09720.060*
C130.4884 (3)0.23622 (12)0.15276 (9)0.0381 (4)
C140.5104 (3)0.15067 (15)0.20925 (10)0.0508 (4)
H14A0.51840.08950.17930.061*
H14B0.64850.15790.23680.061*
N10.3353 (2)0.14007 (10)0.26726 (7)0.0411 (3)
S10.13533 (6)0.06492 (3)0.24587 (3)0.04857 (14)
O1−0.0312 (2)0.07909 (13)0.30334 (10)0.0755 (4)
O20.0845 (2)0.08028 (11)0.16558 (8)0.0706 (4)
C150.2358 (4)−0.05725 (14)0.25679 (12)0.0625 (5)
H15A0.1233−0.10380.24260.094*
H15B0.2779−0.06790.31010.094*
H15C0.3610−0.06650.22350.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0547 (10)0.0613 (12)0.0448 (10)0.0043 (11)−0.0069 (9)0.0037 (9)
C20.0788 (14)0.0725 (15)0.0466 (11)−0.0145 (13)−0.0131 (10)−0.0001 (10)
C30.1070 (17)0.0532 (12)0.0490 (12)−0.0108 (15)0.0061 (12)−0.0087 (10)
C40.0838 (15)0.0532 (12)0.0565 (13)0.0162 (12)0.0131 (11)−0.0011 (10)
C50.0494 (9)0.0554 (12)0.0506 (11)0.0045 (9)0.0012 (8)0.0007 (9)
C60.0517 (9)0.0427 (10)0.0368 (9)−0.0001 (8)−0.0009 (7)0.0050 (8)
C70.0658 (11)0.0457 (10)0.0431 (10)0.0025 (9)−0.0100 (8)0.0083 (8)
C80.0486 (9)0.0484 (10)0.0459 (10)0.0070 (8)0.0010 (7)0.0033 (8)
C90.0626 (12)0.0447 (10)0.0580 (12)0.0091 (9)−0.0101 (9)0.0042 (9)
C100.0896 (14)0.0486 (12)0.0459 (11)−0.0099 (11)−0.0092 (11)0.0095 (9)
C110.0761 (12)0.0645 (13)0.0472 (11)−0.0042 (12)0.0139 (10)0.0025 (9)
C120.0519 (10)0.0506 (10)0.0478 (10)0.0005 (10)0.0077 (8)−0.0032 (8)
C130.0413 (7)0.0378 (9)0.0352 (8)−0.0007 (7)−0.0025 (6)−0.0018 (7)
C140.0419 (9)0.0528 (11)0.0577 (11)0.0103 (8)0.0060 (8)0.0116 (9)
N10.0426 (7)0.0420 (8)0.0387 (7)0.0012 (6)−0.0023 (6)0.0043 (6)
S10.0398 (2)0.0481 (2)0.0578 (3)0.00017 (19)−0.0094 (2)0.0060 (2)
O10.0430 (7)0.0847 (11)0.0987 (11)0.0038 (8)0.0144 (7)0.0118 (9)
O20.0796 (9)0.0658 (9)0.0665 (9)−0.0051 (8)−0.0352 (7)0.0106 (7)
C150.0804 (12)0.0414 (10)0.0655 (13)−0.0019 (10)−0.0118 (11)0.0052 (10)

Geometric parameters (Å, °)

C1—C21.369 (3)C9—H90.930
C1—C61.384 (3)C10—C111.374 (3)
C1—H10.930C10—H100.930
C2—C31.376 (3)C11—C121.380 (3)
C2—H20.930C11—H110.930
C3—C41.364 (3)C12—C131.382 (2)
C3—H30.930C12—H120.930
C4—C51.380 (3)C13—C141.509 (2)
C4—H40.930C14—N11.465 (2)
C5—C61.380 (2)C14—H14A0.970
C5—H50.930C14—H14B0.970
C6—C71.503 (3)N1—S11.6250 (14)
C7—N11.479 (2)S1—O21.4247 (13)
C7—H7A0.970S1—O11.4269 (14)
C7—H7B0.970S1—C151.764 (2)
C8—C131.381 (2)C15—H15A0.960
C8—C91.387 (3)C15—H15B0.960
C8—H80.9300C15—H15C0.960
C9—C101.366 (3)
C2—C1—C6120.7 (2)C11—C10—H10120.0
C2—C1—H1119.7C10—C11—C12119.9 (2)
C6—C1—H1119.7C10—C11—H11120.1
C1—C2—C3120.5 (2)C12—C11—H11120.1
C1—C2—H2119.8C11—C12—C13120.61 (19)
C3—C2—H2119.8C11—C12—H12119.7
C4—C3—C2119.6 (2)C13—C12—H12119.7
C4—C3—H3120.2C8—C13—C12119.02 (15)
C2—C3—H3120.2C8—C13—C14124.00 (15)
C3—C4—C5120.2 (2)C12—C13—C14116.98 (15)
C3—C4—H4119.9N1—C14—C13116.36 (14)
C5—C4—H4119.9N1—C14—H14A108.2
C6—C5—C4120.7 (2)C13—C14—H14A108.2
C6—C5—H5119.6N1—C14—H14B108.2
C4—C5—H5119.6C13—C14—H14B108.2
C5—C6—C1118.34 (17)H14A—C14—H14B107.4
C5—C6—C7121.06 (16)C14—N1—C7115.38 (14)
C1—C6—C7120.50 (16)C14—N1—S1116.99 (12)
N1—C7—C6112.15 (14)C7—N1—S1116.21 (11)
N1—C7—H7A109.2O2—S1—O1119.46 (10)
C6—C7—H7A109.2O2—S1—N1106.89 (8)
N1—C7—H7B109.2O1—S1—N1107.15 (8)
C6—C7—H7B109.2O2—S1—C15108.24 (10)
H7A—C7—H7B107.9O1—S1—C15107.36 (10)
C13—C8—C9120.04 (17)N1—S1—C15107.16 (9)
C13—C8—H8120.0S1—C15—H15A109.5
C9—C8—H8120.0S1—C15—H15B109.5
C10—C9—C8120.37 (19)H15A—C15—H15B109.5
C10—C9—H9119.8S1—C15—H15C109.5
C8—C9—H9119.8H15A—C15—H15C109.5
C9—C10—C11120.07 (18)H15B—C15—H15C109.5
C9—C10—H10120.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.503.366 (2)149
C7—H7B···O10.972.442.911 (2)109
C8—H8···N10.932.612.937 (2)101

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2454).

References

  • Banks & Hudson (1986). J. Chem. Soc. Perkin Trans 2, pp. 151–155.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o3084.
  • Otterlo, W. A. L. van, Panayides, J.-L. & Fernandes, M. A. (2004). Acta Cryst. E60, o1586–o1588.
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber.102, 3357–3363.
  • Youn, J.-H. & Herrmann, R. (1986). Tetrahedron Lett.27, 1493–1494.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography