PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1369.
Published online 2008 June 28. doi:  10.1107/S1600536808017868
PMCID: PMC2961839

Ethyl 4-(3-butyrylthio­ureido)benzoate

Abstract

The title compound, C14H18N2O3S, crystallizes in the thio­amide form with an intra­molecular N—H(...)O hydrogen bond associated with the thio­urea unit. With the benzoic acid and the butyrylthio­ureido units, the mol­ecule consists of two planar building blocks connected by the common NH function adjacent to the aromatic ring. The inter­planar angle is 33.38 (3)°. Mol­ecules are connected in chains parallel to [110] by classical hydrogen bonds of the N—H(...)O type from the other NH group to the benzoate C=O of a neighboring mol­ecule.

Related literature

For related literature, see: del Campo et al. (2002 [triangle]); D’hooghe et al. (2005 [triangle]); Dušek (1985 [triangle]); Huebner et al. (1953 [triangle]); Rodriguez-Fernandez et al. (2005 [triangle]); Xu et al. (2004 [triangle]); Zeng et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1369-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O3S
  • M r = 294.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1369-efi1.jpg
  • a = 7.9817 (4) Å
  • b = 9.8843 (6) Å
  • c = 11.0759 (6) Å
  • α = 114.472 (6)°
  • β = 101.156 (4)°
  • γ = 102.277 (5)°
  • V = 737.15 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 100 (2) K
  • 0.28 × 0.18 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur S diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.944, T max = 1.000 (expected range = 0.918–0.973)
  • 15025 measured reflections
  • 4104 independent reflections
  • 3045 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.096
  • S = 0.96
  • 4104 reflections
  • 191 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017868/im2072sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017868/im2072Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Epoxy resins have the combination of good thermal and dimensional stability, excellent chemical and corrosion resistance, high tensile strength and modulus, and ease of handling and processability, ensuring their wide application in the aerospace and electronic industries in the form of structural adhesives, advanced composite matrices, and packaging materials (Dušek, 1985). The properties of cured epoxy polymers largely depend on the nature of chemical structure of the starting resins and curing agents. The title compound (I) is a precursor in an attempt to synthesize imidazole derivatives and transition metal complexes as epoxy resin curing agents and accelerators. Substituted thioureas are an important class of compounds, precursors or intermediates towards the synthesis of a variety of heterocyclic systems such as imidazole-2-thiones (Zeng et al., 2003), 2-imino-1,3-thiazolines (D'hooghe et al., 2005), pyrimidine-2-thiones and (benzothiazolyl)-4-quinazolinones. Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, antifungal, antitubercular, antithyroidal, herbicidal and insecticidal activities (Huebner et al., 1953) and as agrochemicals (Xu et al., 2004). Among thiourea derivatives, acylthioureas, with O and S as potential donor sites, have been found to display a remarkably rich coordination chemistry. Such coordination compounds of thiourea have been studied for various biological systems (Rodriguez-Fernandez et al., 2005). In recent years some attention has also been paid to the potential use of acylthioureas as highly selective reagents for the enrichment and separation of metal cations (del Campo et al.,2002).

The title compound crystallizes in the thioamide form with an intramolecular hydrogen bond N2—H02···O1. Bond lengths and angles (cf. Supplementary Material) may be regarded as normal. The molecule consists of two planar building blocks: the butyrylthioureido group (S, C1–5, O1, N1, N2) and the benzoic acid moiety (C6–14, N2, O2, O3). Mean deviations from planarity for these moieties are 0.12 and 0.13 Å, respectively, and the interplanar angle is 33.38 (3)°. Molecules are connected to give infinite chains parallel to [110] by classical hydrogen bonds N1—H01···O2. These are in turn connected to antiparallel chains by the weak hydrogen bonds C13—H13A···O1. Additionally, there are three C—H···S contacts that may be borderline weak H bonds (Table 1, Fig. 2).

Experimental

A mixture of ammonium thiocyanate (26 mmol) and butanoyl chloride (26 mmol) in anhydrous acetone (70 ml) was stirred for 35 min. Then p-aminobenzoic acid ethyl ester (26 mmol) was added dropwise and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured in acidified cold water. The resulting light green solid was filtered and washed with cold acetone.The product was recrystallized from ethanol as light greenish crystals (3.62 g, 91%), m.p. 412 K.

Refinement

The NH H atoms were refined freely but with distance restraints (command SADI). Methyl H atoms were included on the basis of idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other hydrogen atoms were included using a riding model with C—H 0.95 (aromatic) or 0.99 (methylene) Å. U(H) values were fixed at 1.5Uiso(C) of the parent C atom for methyl H, 1.2Uiso(C) for other H.

Figures

Fig. 1.
The molecular structure of the title compound in the crystal. Ellipsoids represent 50% probability levels.
Fig. 2.
Packing diagram of I showing classical and "weak" H bonds as thick or thin dashed bonds respectively. The double chain pattern is apparent.

Crystal data

C14H18N2O3SZ = 2
Mr = 294.36F000 = 312
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Melting point: 412 K
a = 7.9817 (4) ÅMo Kα radiation λ = 0.71073 Å
b = 9.8843 (6) ÅCell parameters from 7295 reflections
c = 11.0759 (6) Åθ = 2.8–30.7º
α = 114.472 (6)ºµ = 0.23 mm1
β = 101.156 (4)ºT = 100 (2) K
γ = 102.277 (5)ºPyramid, colourless
V = 737.15 (7) Å30.28 × 0.18 × 0.12 mm

Data collection

Oxford Diffraction Xcalibur S diffractometer4104 independent reflections
Radiation source: Enhance (Mo) X-ray Source3045 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 16.1057 pixels mm-1θmax = 30.8º
T = 100(2) Kθmin = 2.8º
ω scansh = −10→11
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2008)k = −14→13
Tmin = 0.944, Tmax = 1.000l = −15→15
15025 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.059P)2] where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
4104 reflectionsΔρmax = 0.45 e Å3
191 parametersΔρmin = −0.24 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)- 7.3219 (0.0010) x + 3.9334 (0.0038) y + 4.1423 (0.0037) z = 2.1058 (0.0010)* -0.1410 (0.0006) S * -0.1556 (0.0012) C1 * -0.0747 (0.0014) C2 * 0.1521 (0.0012) C3 * 0.1191 (0.0012) C4 * -0.0053 (0.0010) C5 * 0.0111 (0.0008) O1 * 0.2033 (0.0010) N1 * -0.1089 (0.0009) N2Rms deviation of fitted atoms = 0.1249- 6.2227 (0.0013) x + 7.6804 (0.0015) y - 1.8402 (0.0041) z = 2.0195 (0.0017)Angle to previous plane (with approximate e.s.d.) = 33.38 (0.03)* -0.0510 (0.0011) C6 * -0.1492 (0.0011) C7 * -0.0777 (0.0011) C8 * 0.0751 (0.0012) C9 * 0.1972 (0.0012) C10 * 0.1468 (0.0011) C11 * 0.0732 (0.0011) C12 * 0.0367 (0.0013) C13 * -0.2621 (0.0011) C14 * 0.0788 (0.0009) O2 * 0.0421 (0.0010) O3 * -0.1099 (0.0009) N2Rms deviation of fitted atoms = 0.1266
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.47787 (5)0.62325 (4)0.72720 (3)0.02040 (10)
O10.11708 (12)0.45529 (11)0.28568 (9)0.0208 (2)
O21.03683 (13)1.25923 (10)0.60929 (9)0.0217 (2)
O31.04639 (12)1.31498 (10)0.82958 (9)0.0200 (2)
N10.20683 (14)0.45249 (13)0.49337 (11)0.0164 (2)
H010.186 (2)0.3993 (17)0.5294 (16)0.020 (4)*
N20.38248 (15)0.68105 (13)0.51142 (11)0.0168 (2)
H020.318 (2)0.6327 (19)0.4292 (16)0.034 (5)*
C1−0.2318 (2)−0.03015 (17)0.08970 (15)0.0334 (4)
H1A−0.1512−0.08730.10610.050*
H1B−0.2954−0.0787−0.01070.050*
H1C−0.3200−0.03430.13960.050*
C2−0.1213 (2)0.14034 (17)0.14262 (14)0.0313 (3)
H2A−0.03330.14420.09120.038*
H2B−0.20270.19710.12380.038*
C3−0.02144 (18)0.22120 (15)0.29715 (13)0.0195 (3)
H3A−0.11100.22450.34800.023*
H3B0.04970.15740.31620.023*
C40.10397 (16)0.38601 (15)0.35434 (13)0.0161 (3)
C50.35361 (16)0.58945 (14)0.57240 (12)0.0152 (2)
C60.52972 (17)0.81999 (14)0.56141 (13)0.0158 (2)
C70.60248 (17)0.84283 (15)0.46402 (13)0.0177 (3)
H70.55450.76590.36810.021*
C80.74473 (18)0.97773 (15)0.50722 (13)0.0174 (3)
H80.79320.99370.44050.021*
C90.81749 (17)1.09026 (14)0.64780 (13)0.0162 (3)
C100.74195 (17)1.06811 (14)0.74442 (13)0.0176 (3)
H100.78981.14530.84020.021*
C110.59726 (18)0.93406 (15)0.70161 (13)0.0183 (3)
H110.54480.92030.76750.022*
C120.97646 (17)1.22913 (14)0.69088 (13)0.0168 (3)
C131.20350 (18)1.45409 (16)0.88185 (14)0.0237 (3)
H13A1.16741.53520.86320.028*
H13B1.29421.42650.83500.028*
C141.28094 (19)1.51477 (17)1.03564 (14)0.0267 (3)
H14A1.18821.53691.08020.040*
H14B1.38361.61161.07510.040*
H14C1.32181.43561.05250.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.02247 (18)0.01856 (17)0.01304 (16)−0.00118 (13)−0.00170 (12)0.00807 (12)
O10.0212 (5)0.0233 (5)0.0159 (5)0.0035 (4)0.0012 (4)0.0114 (4)
O20.0249 (5)0.0201 (5)0.0190 (5)0.0014 (4)0.0087 (4)0.0103 (4)
O30.0195 (5)0.0196 (5)0.0147 (4)−0.0025 (4)0.0005 (4)0.0091 (4)
N10.0176 (5)0.0163 (5)0.0118 (5)0.0002 (4)0.0020 (4)0.0072 (4)
N20.0179 (5)0.0166 (5)0.0114 (5)0.0007 (4)0.0007 (4)0.0069 (4)
C10.0376 (9)0.0212 (7)0.0205 (7)0.0011 (6)−0.0044 (6)0.0010 (6)
C20.0431 (9)0.0214 (7)0.0159 (7)0.0027 (6)−0.0031 (6)0.0059 (6)
C30.0197 (6)0.0180 (6)0.0138 (6)0.0018 (5)0.0023 (5)0.0046 (5)
C40.0147 (6)0.0193 (6)0.0126 (6)0.0058 (5)0.0036 (5)0.0062 (5)
C50.0153 (6)0.0146 (6)0.0138 (6)0.0040 (5)0.0046 (5)0.0055 (5)
C60.0153 (6)0.0149 (6)0.0166 (6)0.0032 (5)0.0030 (5)0.0085 (5)
C70.0218 (7)0.0169 (6)0.0128 (6)0.0053 (5)0.0041 (5)0.0066 (5)
C80.0220 (6)0.0178 (6)0.0155 (6)0.0063 (5)0.0071 (5)0.0102 (5)
C90.0174 (6)0.0152 (6)0.0169 (6)0.0043 (5)0.0045 (5)0.0093 (5)
C100.0215 (6)0.0159 (6)0.0132 (6)0.0043 (5)0.0040 (5)0.0065 (5)
C110.0215 (6)0.0188 (6)0.0157 (6)0.0050 (5)0.0073 (5)0.0093 (5)
C120.0186 (6)0.0165 (6)0.0170 (6)0.0063 (5)0.0048 (5)0.0096 (5)
C130.0192 (7)0.0222 (7)0.0232 (7)−0.0037 (5)−0.0011 (5)0.0135 (6)
C140.0227 (7)0.0281 (8)0.0198 (7)0.0003 (6)0.0025 (5)0.0086 (6)

Geometric parameters (Å, °)

S—C51.6617 (13)C13—C141.4939 (18)
O1—C41.2207 (15)N1—H010.791 (13)
O2—C121.2114 (15)N2—H020.823 (15)
O3—C121.3336 (15)C1—H1A0.9800
O3—C131.4576 (15)C1—H1B0.9800
N1—C51.3850 (16)C1—H1C0.9800
N1—C41.3856 (16)C2—H2A0.9900
N2—C51.3443 (16)C2—H2B0.9900
N2—C61.4161 (16)C3—H3A0.9900
C1—C21.520 (2)C3—H3B0.9900
C2—C31.5071 (18)C7—H70.9500
C3—C41.5044 (17)C8—H80.9500
C6—C111.3929 (17)C10—H100.9500
C6—C71.3930 (17)C11—H110.9500
C7—C81.3833 (17)C13—H13A0.9900
C8—C91.3926 (17)C13—H13B0.9900
C9—C101.3944 (17)C14—H14A0.9800
C9—C121.4846 (17)C14—H14B0.9800
C10—C111.3896 (17)C14—H14C0.9800
C12—O3—C13116.02 (10)C2—C1—H1C109.5
C5—N1—C4129.07 (11)H1A—C1—H1C109.5
C5—N2—C6127.24 (11)H1B—C1—H1C109.5
C3—C2—C1111.68 (12)C3—C2—H2A109.3
C4—C3—C2114.61 (11)C1—C2—H2A109.3
O1—C4—N1122.53 (12)C3—C2—H2B109.3
O1—C4—C3123.91 (11)C1—C2—H2B109.3
N1—C4—C3113.56 (11)H2A—C2—H2B107.9
N2—C5—N1114.66 (11)C4—C3—H3A108.6
N2—C5—S126.56 (9)C2—C3—H3A108.6
N1—C5—S118.75 (9)C4—C3—H3B108.6
C11—C6—C7120.20 (11)C2—C3—H3B108.6
C11—C6—N2122.15 (11)H3A—C3—H3B107.6
C7—C6—N2117.61 (11)C8—C7—H7120.1
C8—C7—C6119.86 (11)C6—C7—H7120.1
C7—C8—C9120.51 (11)C7—C8—H8119.7
C8—C9—C10119.35 (12)C9—C8—H8119.7
C8—C9—C12118.79 (11)C11—C10—H10119.7
C10—C9—C12121.84 (11)C9—C10—H10119.7
C11—C10—C9120.51 (12)C10—C11—H11120.2
C10—C11—C6119.52 (11)C6—C11—H11120.2
O2—C12—O3124.13 (12)O3—C13—H13A110.2
O2—C12—C9123.78 (11)C14—C13—H13A110.2
O3—C12—C9112.08 (10)O3—C13—H13B110.2
O3—C13—C14107.33 (10)C14—C13—H13B110.2
C5—N1—H01115.6 (11)H13A—C13—H13B108.5
C4—N1—H01114.8 (11)C13—C14—H14A109.5
C5—N2—H02109.4 (11)C13—C14—H14B109.5
C6—N2—H02121.4 (11)H14A—C14—H14B109.5
C2—C1—H1A109.5C13—C14—H14C109.5
C2—C1—H1B109.5H14A—C14—H14C109.5
H1A—C1—H1B109.5H14B—C14—H14C109.5
C1—C2—C3—C4174.75 (13)C7—C8—C9—C10−1.97 (19)
C5—N1—C4—O1−10.3 (2)C7—C8—C9—C12176.71 (11)
C5—N1—C4—C3168.79 (12)C8—C9—C10—C110.99 (19)
C2—C3—C4—O14.85 (19)C12—C9—C10—C11−177.65 (12)
C2—C3—C4—N1−174.24 (12)C9—C10—C11—C61.1 (2)
C6—N2—C5—N1−174.22 (11)C7—C6—C11—C10−2.31 (19)
C6—N2—C5—S4.13 (19)N2—C6—C11—C10−179.92 (12)
C4—N1—C5—N210.80 (19)C13—O3—C12—O21.00 (18)
C4—N1—C5—S−167.69 (10)C13—O3—C12—C9179.95 (10)
C5—N2—C6—C11−42.44 (19)C8—C9—C12—O27.60 (19)
C5—N2—C6—C7139.90 (13)C10—C9—C12—O2−173.76 (13)
C11—C6—C7—C81.35 (19)C8—C9—C12—O3−171.36 (12)
N2—C6—C7—C8179.06 (11)C10—C9—C12—O37.28 (17)
C6—C7—C8—C90.81 (19)C12—O3—C13—C14−169.36 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H02···O10.82 (2)1.92 (2)2.653 (1)148 (2)
N1—H01···O2i0.79 (1)2.20 (1)2.957 (1)160 (2)
C13—H13A···O1ii0.992.583.363 (2)136
C1—H1B···Siii0.983.003.854 (2)147
C13—H13B···Siv0.992.963.577 (1)122
C14—H14C···Sv0.982.983.821 (2)144

Symmetry codes: (i) x−1, y−1, z; (ii) −x+1, −y+2, −z+1; (iii) x−1, y−1, z−1; (iv) x+1, y+1, z; (v) −x+2, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2072).

References

  • Campo, R. del, Criado, J. J., Hermosa, M. R., Jimenez-Sanchez, A., Manzano, J. L., Mante, E., Rodriguez-Fernandez, E. & Sanz, F. (2002). J. Inorg. Biochem.89, 74–82. [PubMed]
  • D’hooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem.70, 227–232. [PubMed]
  • Dušek, K. (1985). Adv. Polym. Sci.78, 115–118.
  • Huebner, O. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schrooder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc.75, 2274–2275.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Rodriguez-Fernandez, E., Manzano, J. L., Benito, J. J., Hermosa, R., Monte, E. & Criado, J. J. (2005). J. Inorg. Biochem.99 , 1558–1572. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Xu, Y., Hua, W., Liu, X. & Zhu, D. (2004). Chin. J. Org. Chem.24, 1217–1222.
  • Zeng, R. S., Zou, J. P., Zchen, S. J. & Shen, Q. (2003). Org. Lett.61, 1657–1659. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography