PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1358.
Published online 2008 June 28. doi:  10.1107/S1600536808019107
PMCID: PMC2961837

2-(1H-Benzimidazol-1-yl)-1-phenyl­ethanone

Abstract

In the mol­ecule of the title compound, C15H12N2O, the planar benzimidazole system is oriented at a dihedral angle of 80.43 (5)° with respect to the phenyl ring. In the crystal structure, non-classical inter­molecular C—H(...)N and C—H(...)O hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature

For general backgroud, see: Göker et al. (2002 [triangle]); Özden et al. (2004 [triangle]); Özel Güven et al. (2007a [triangle],b [triangle]); Schar et al. (1976 [triangle]). For related literature, see: Peeters et al. (1997 [triangle]); Freer et al. (1986 [triangle]); Özel Güven et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1358-scheme1.jpg

Experimental

Crystal data

  • C15H12N2O
  • M r = 236.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1358-efi1.jpg
  • a = 5.0475 (2) Å
  • b = 11.2319 (6) Å
  • c = 10.3517 (5) Å
  • β = 96.620 (3)°
  • V = 582.96 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 120 (2) K
  • 0.45 × 0.22 × 0.03 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.962, T max = 0.997
  • 6918 measured reflections
  • 2639 independent reflections
  • 2265 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.119
  • S = 1.06
  • 2639 reflections
  • 212 parameters
  • 1 restraint
  • All H-atom parameters refined
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808019107/si2097sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019107/si2097Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Zonguldak Karaelmas University Research Fund (grant No: 2004–13-02–16).

supplementary crystallographic information

Comment

Benzimidazoles have been shown to exhibit a large number of biological activities. Some of the substituted benzimidazole derivatives have highly potent antifungal (Göker et al., 2002) and antibacterial (Özden et al., 2004) activities. Recently, it has been reported that benzimidazole ring containing aryl ethers (Özel Güven et al., 2007a,b) similar to miconazole (Peeters et al., 1997) and econazole (Freer et al., 1986) structures have more antibacterial activities than antifungal activities (Schar et al., 1976). The crystal structure of oxime form of the benzimidazole substituted ketone has been reported previously (Özel Güven et al., 2007). We report herein the crystal structure of ketone, which is a starting material for biologically important molecules.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system is oriented with respect to the phenyl ring at a dihedral angle of 80.43 (5)°. Atoms C8 and C9 are -0.010 (2) Å and 0.044 (2) Å away from the ring planes of benzimidazole and phenyl, respectively. So, they are coplanar with the adjacent rings. The N1—C8—C9 [111.88 (15)°] and C8—C9—C10 [117.10 (15)°] bond angles are highly different from each other, while O1—C9—C8 [121.07 (16)°] and O1—C9—C10 [121.84 (17)°] bond angles are nearly equal. The N1—C1—N2 [114.25 (18)°], N2—C2—C7 [110.35 (17)°] and C2—C7—C6 [123.30 (18)°] bond angles are enlarged, while C5—C6—C7 [116.34 (19)°] bond angle is narrowed, probably due to the intermolecular C—H···N and C—H···O hydrogen bonds (Table 1).

In the crystal structure, non-classical intermolecular C—H···N and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to the a,b plane (Fig. 2), in which they seem to be effective in the stabilization of the crystal structure.

Experimental

The title compound, was synthesized by the reaction of 2-bromo-1-phenyl- ethanone (Özel Güven et al., 2007a) with 1H-benzimidazole. A solution of 2-bromo-1-phenylethanone (4.00 g, 20.10 mmol) in dioxane-ether (8 ml) was added to an ice-cold solution of benzimidazole (11.87 g, 100.5 mmol) in methanol (20 ml) over 60 min under argon atmosphere. The reaction mixture was warmed to ambient temperature and stirred for an additional 18 h, diluted with water (20 ml), and then extracted with chloroform. Organic extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then chromatographed on neutral silica-gel column using chloroform-methanol as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ketone from a mixture of hexane/ethyl acetate (1:2) (yield; 2.85 g, 60%).

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were merged. H atoms were located in difference syntheses and refined isotropically [C—H = 0.95 (2)–1.06 (3) Å; Uiso(H) = 0.020 (5)–0.061 (9) Å2].

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H12N2OF000 = 248
Mr = 236.27Dx = 1.346 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1379 reflections
a = 5.0475 (2) Åθ = 2.9–27.5º
b = 11.2319 (6) ŵ = 0.09 mm1
c = 10.3517 (5) ÅT = 120 (2) K
β = 96.620 (3)ºPlate, colorless
V = 582.96 (5) Å30.45 × 0.22 × 0.03 mm
Z = 2

Data collection

Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer2639 independent reflections
Radiation source: fine-focus sealed tube2265 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5º
T = 120(2) Kθmin = 3.6º
[var phi] and ω scansh = −6→6
Absorption correction: multi-scan(SADABS; Sheldrick, 2007)k = −14→14
Tmin = 0.962, Tmax = 0.997l = −13→13
6918 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.119  w = 1/[σ2(Fo2) + (0.0651P)2 + 0.019P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2639 reflectionsΔρmax = 0.23 e Å3
212 parametersΔρmin = −0.22 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.091 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0968 (3)0.55671 (14)0.26162 (13)0.0288 (4)
N10.3784 (3)0.56655 (14)0.05460 (15)0.0236 (4)
N20.3592 (4)0.41520 (16)−0.08838 (17)0.0301 (4)
C10.4848 (4)0.46224 (19)0.0180 (2)0.0265 (4)
H10.651 (6)0.432 (3)0.074 (3)0.048 (7)*
C20.1553 (4)0.49603 (17)−0.12561 (19)0.0251 (4)
C3−0.0424 (4)0.49415 (19)−0.2318 (2)0.0288 (5)
H3−0.051 (5)0.422 (2)−0.291 (2)0.034 (6)*
C4−0.2249 (4)0.5857 (2)−0.2443 (2)0.0315 (5)
H4−0.366 (5)0.584 (3)−0.317 (3)0.045 (7)*
C5−0.2133 (4)0.67987 (19)−0.1537 (2)0.0293 (5)
H5−0.340 (4)0.742 (2)−0.168 (2)0.020 (5)*
C6−0.0171 (4)0.68387 (18)−0.0477 (2)0.0258 (4)
H6−0.013 (5)0.753 (3)0.011 (3)0.048 (7)*
C70.1634 (4)0.59090 (17)−0.03658 (18)0.0237 (4)
C80.4659 (4)0.63860 (18)0.16674 (18)0.0241 (4)
H810.481 (4)0.720 (2)0.143 (2)0.025 (5)*
H820.642 (4)0.609 (2)0.203 (2)0.025 (5)*
C90.2788 (4)0.62815 (17)0.27150 (18)0.0222 (4)
C100.3283 (4)0.70936 (18)0.38542 (18)0.0226 (4)
C110.5216 (4)0.79730 (19)0.39188 (18)0.0273 (5)
H110.646 (4)0.805 (2)0.326 (2)0.024 (5)*
C120.5582 (4)0.8738 (2)0.4985 (2)0.0310 (5)
H120.695 (5)0.934 (2)0.503 (2)0.031 (6)*
C130.3975 (4)0.8617 (2)0.5977 (2)0.0351 (5)
H130.420 (5)0.920 (3)0.678 (3)0.047 (7)*
C140.2068 (5)0.7743 (2)0.5926 (2)0.0352 (5)
H140.089 (6)0.761 (3)0.658 (3)0.061 (9)*
C150.1691 (4)0.69726 (19)0.4872 (2)0.0284 (5)
H150.036 (4)0.636 (2)0.481 (2)0.025 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0307 (7)0.0341 (8)0.0215 (7)−0.0053 (6)0.0026 (5)0.0005 (6)
N10.0279 (8)0.0236 (8)0.0200 (8)−0.0005 (7)0.0049 (6)−0.0003 (6)
N20.0377 (9)0.0257 (8)0.0282 (9)−0.0016 (8)0.0098 (7)−0.0009 (7)
C10.0316 (10)0.0239 (9)0.0249 (10)−0.0013 (8)0.0071 (8)0.0010 (8)
C20.0276 (9)0.0245 (10)0.0245 (10)−0.0034 (8)0.0085 (7)−0.0015 (8)
C30.0341 (10)0.0313 (11)0.0219 (10)−0.0098 (9)0.0075 (8)−0.0055 (8)
C40.0300 (11)0.0417 (12)0.0230 (10)−0.0051 (9)0.0034 (8)0.0013 (8)
C50.0303 (10)0.0336 (12)0.0244 (10)0.0019 (9)0.0052 (8)0.0009 (8)
C60.0297 (10)0.0265 (10)0.0222 (9)0.0016 (8)0.0072 (7)−0.0015 (8)
C70.0271 (9)0.0276 (10)0.0170 (9)−0.0050 (8)0.0045 (7)0.0006 (8)
C80.0269 (10)0.0256 (11)0.0200 (9)−0.0007 (8)0.0029 (8)−0.0002 (8)
C90.0210 (9)0.0241 (9)0.0207 (9)0.0012 (8)−0.0003 (7)0.0034 (7)
C100.0249 (9)0.0246 (9)0.0173 (9)0.0043 (8)−0.0022 (7)0.0027 (7)
C110.0293 (10)0.0311 (11)0.0218 (10)−0.0011 (9)0.0041 (8)0.0027 (8)
C120.0378 (11)0.0294 (11)0.0248 (10)−0.0045 (10)−0.0001 (9)−0.0017 (8)
C130.0464 (13)0.0341 (12)0.0248 (11)−0.0012 (10)0.0043 (9)−0.0040 (9)
C140.0414 (11)0.0437 (13)0.0222 (10)−0.0004 (10)0.0101 (9)−0.0020 (9)
C150.0297 (10)0.0311 (11)0.0243 (10)−0.0029 (9)0.0032 (7)0.0015 (8)

Geometric parameters (Å, °)

O1—C91.215 (2)C7—C21.406 (3)
N1—C11.361 (3)C8—H810.95 (3)
N1—C71.381 (2)C8—H820.98 (2)
N1—C81.442 (3)C9—C81.522 (3)
N2—C11.317 (3)C10—C91.489 (3)
N2—C21.393 (3)C10—C151.403 (3)
C1—H11.02 (3)C11—C101.384 (3)
C3—C21.398 (3)C11—C121.394 (3)
C3—C41.377 (3)C11—H110.99 (2)
C3—H31.01 (3)C12—H120.96 (3)
C4—H40.98 (3)C13—C121.386 (3)
C5—C41.410 (3)C13—C141.371 (3)
C5—H50.95 (2)C13—H131.06 (3)
C6—C51.391 (3)C14—C151.389 (3)
C6—C71.382 (3)C14—H140.96 (3)
C6—H60.99 (3)C15—H150.96 (2)
C1—N1—C7106.55 (16)N1—C8—H81111.1 (13)
C1—N1—C8127.82 (17)N1—C8—H82107.2 (13)
C7—N1—C8125.63 (16)C9—C8—H81109.4 (13)
C1—N2—C2103.83 (17)C9—C8—H82108.0 (13)
N1—C1—H1116.9 (16)H81—C8—H82109.1 (19)
N2—C1—N1114.25 (18)O1—C9—C8121.07 (16)
N2—C1—H1128.8 (16)O1—C9—C10121.84 (17)
N2—C2—C3130.22 (18)C10—C9—C8117.10 (15)
N2—C2—C7110.35 (17)C11—C10—C9121.91 (17)
C3—C2—C7119.43 (18)C11—C10—C15119.61 (18)
C2—C3—H3117.7 (14)C15—C10—C9118.47 (18)
C4—C3—C2118.14 (19)C10—C11—C12120.42 (18)
C4—C3—H3124.0 (14)C10—C11—H11122.1 (13)
C3—C4—C5121.5 (2)C12—C11—H11117.4 (13)
C3—C4—H4118.4 (17)C13—C12—C11119.4 (2)
C5—C4—H4120.1 (17)C13—C12—H12120.8 (15)
C6—C5—C4121.3 (2)C11—C12—H12119.8 (15)
C6—C5—H5120.4 (13)C12—C13—H13120.3 (15)
C4—C5—H5118.3 (13)C14—C13—C12120.7 (2)
C5—C6—H6118.1 (15)C14—C13—H13119.0 (15)
C7—C6—C5116.34 (19)C13—C14—C15120.5 (2)
C7—C6—H6125.5 (15)C13—C14—H14125 (2)
N1—C7—C2105.01 (16)C15—C14—H14115 (2)
N1—C7—C6131.69 (17)C10—C15—H15118.6 (13)
C6—C7—C2123.30 (18)C14—C15—C10119.4 (2)
N1—C8—C9111.88 (15)C14—C15—H15122.0 (13)
C7—N1—C1—N2−0.3 (2)N1—C7—C2—N20.66 (19)
C8—N1—C1—N2178.87 (18)N1—C7—C2—C3−179.80 (17)
C1—N1—C7—C2−0.21 (18)C6—C7—C2—N2−179.13 (17)
C1—N1—C7—C6179.6 (2)C6—C7—C2—C30.4 (3)
C8—N1—C7—C2−179.44 (17)O1—C9—C8—N17.0 (2)
C8—N1—C7—C60.3 (3)C10—C9—C8—N1−172.76 (16)
C1—N1—C8—C9−105.9 (2)C11—C10—C9—O1−174.63 (18)
C7—N1—C8—C973.2 (2)C11—C10—C9—C85.1 (3)
C2—N2—C1—N10.7 (2)C15—C10—C9—O13.9 (3)
C1—N2—C2—C3179.7 (2)C15—C10—C9—C8−176.38 (17)
C1—N2—C2—C7−0.8 (2)C9—C10—C15—C14−178.14 (19)
C4—C3—C2—N2178.8 (2)C11—C10—C15—C140.4 (3)
C4—C3—C2—C7−0.7 (3)C10—C11—C12—C13−0.6 (3)
C2—C3—C4—C50.6 (3)C12—C11—C10—C9178.37 (18)
C6—C5—C4—C3−0.2 (3)C12—C11—C10—C15−0.1 (3)
C5—C6—C7—N1−179.7 (2)C14—C13—C12—C111.1 (3)
C5—C6—C7—C20.0 (3)C12—C13—C14—C15−0.8 (3)
C7—C6—C5—C4−0.1 (3)C13—C14—C15—C100.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H81···N2i0.95 (2)2.43 (2)3.355 (3)165.2 (17)
C8—H82···O1ii0.98 (2)2.38 (2)3.351 (3)170.1 (17)

Symmetry codes: (i) −x+1, y+1/2, −z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2097).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350–1352.
  • Göker, H., Kuş, C., Boykin, D. W., Yıldız, S. & Altanlar, N. (2002). Bioorg. Med. Chem.10, 2589–2596. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Özden, S., Karataş, H., Yıldız, S. & Göker, H. (2004). Arch. Pharm.337, 556–562. [PubMed]
  • Özel Güven, Ö. el, Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, o3463–o3464.
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett.17, 2233–2236. [PubMed]
  • Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem.44, 731–734.
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1997). Bull. Soc. Chim. Belg.88, 265–272.
  • Schar, G., Kayser, F. H. & Dupont, M. C. (1976). Chemotheraphy, 22, 211–220. [PubMed]
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography