PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1281.
Published online 2008 June 19. doi:  10.1107/S1600536808017728
PMCID: PMC2961824

2-Methyl-7-nitro-2,3-dihydro-1-benzofuran

Abstract

The dihydro­furan ring of the title compound, C9H9NO3, adopts an envelope conformation. The nitro group is twisted slightly away from the attached benzene ring [dihedral angle = 21.9 (1)°].

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For details of the synthesis, see: Majumdar et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1281-scheme1.jpg

Experimental

Crystal data

  • C9H9NO3
  • M r = 179.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1281-efi1.jpg
  • a = 8.4250 (17) Å
  • b = 7.2260 (14) Å
  • c = 28.295 (6) Å
  • V = 1722.6 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.969, T max = 0.979
  • 2977 measured reflections
  • 1551 independent reflections
  • 829 reflections with I > 2σ(I)
  • R int = 0.048
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.182
  • S = 1.01
  • 1551 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017728/ci2613sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017728/ci2613Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The tittle compound, 2-methyl-7-nitro-2,3-dihydrobenzofuran, is an important intermediate for the synthesis of 2-methyl-2,3-dihydrobenzofuran-7-amine. we report here the crystal structure of the title compound.

The molecular structure of the compound is shown in Fig. 1. Bond lengths and angles are within normal ranges (Allen et al., 1987), except the C1—C2 bond length of 1.420 (6) Å. The dihydrofuran ring is in an envelope conformation with C2 as flap atom. The nitro group is slightly twisted away from the attached benzene ring [O2—N—C8—C9 = 5.3 (5)° and O3—N—C8—C7 = 5.9 (5)°]. No hydrogen bonding interactions are observed in the crystal structure (Fig.2).

Experimental

The title compound was synthesized according to the literature method (Majumdar et al., 2008). Single crystals were obtained by slow evaporation of a methanol (25 ml) solution of the compound (0.30 g, 1.6 mmol) at room temperature for about 4 d.

Refinement

H atoms were positioned geometrically [C-H = 0.93-0.98 Å] and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic and methylene H and 1.5 for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 2.
A view of the molecular packing in the title compound.

Crystal data

C9H9NO3F000 = 752
Mr = 179.17Dx = 1.382 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.4250 (17) Åθ = 10–13º
b = 7.2260 (14) ŵ = 0.11 mm1
c = 28.295 (6) ÅT = 298 (2) K
V = 1722.6 (6) Å3Block, colourless
Z = 80.30 × 0.20 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.048
Radiation source: fine-focus sealed tubeθmax = 25.2º
Monochromator: graphiteθmin = 1.4º
T = 298(2) Kh = 0→10
ω/2θ scansk = −8→8
Absorption correction: ψ scan(North et al., 1968)l = 0→33
Tmin = 0.969, Tmax = 0.9793 standard reflections
2977 measured reflections every 200 reflections
1551 independent reflections intensity decay: none
829 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.182  w = 1/[σ2(Fo2) + (0.06P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1551 reflectionsΔρmax = 0.32 e Å3
118 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N0.5181 (3)0.0623 (5)0.39917 (10)0.0581 (8)
O10.2624 (3)0.0149 (4)0.32787 (7)0.0601 (8)
C10.1077 (6)0.0403 (8)0.25775 (16)0.0970 (16)
H1A0.1909−0.02040.24050.146*
H1B0.12580.17150.25760.146*
H1C0.00740.01400.24310.146*
O20.5612 (3)0.0409 (5)0.35839 (9)0.0867 (10)
C20.1064 (4)−0.0249 (8)0.30507 (14)0.0812 (14)
H2A0.0947−0.15980.30380.097*
O30.6098 (3)0.0689 (6)0.43222 (10)0.0992 (12)
C3−0.0172 (4)0.0473 (6)0.33963 (14)0.0706 (11)
H3A−0.06140.16380.32890.085*
H3B−0.1025−0.04130.34380.085*
C40.0753 (4)0.0725 (5)0.38480 (12)0.0532 (9)
C50.0285 (4)0.1112 (5)0.42971 (13)0.0634 (10)
H5A−0.07880.12400.43680.076*
C60.1416 (5)0.1314 (6)0.46479 (13)0.0624 (10)
H6A0.10930.15570.49560.075*
C70.3000 (4)0.1164 (5)0.45498 (12)0.0560 (9)
H7A0.37470.13190.47890.067*
C80.3491 (4)0.0774 (5)0.40863 (11)0.0460 (8)
C90.2360 (4)0.0537 (4)0.37377 (11)0.0459 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.0376 (15)0.085 (2)0.0513 (17)−0.0068 (16)−0.0090 (16)0.0044 (16)
O10.0358 (11)0.104 (2)0.0411 (12)0.0006 (13)−0.0058 (12)−0.0061 (12)
C10.066 (3)0.151 (5)0.074 (3)−0.004 (3)−0.022 (3)0.017 (3)
O20.0389 (13)0.168 (3)0.0530 (16)0.0016 (17)0.0045 (13)−0.0016 (17)
C20.047 (2)0.134 (4)0.063 (2)−0.004 (2)−0.014 (2)−0.002 (3)
O30.0446 (15)0.176 (3)0.0773 (19)−0.0046 (19)−0.0248 (16)−0.009 (2)
C30.0399 (19)0.098 (3)0.074 (3)−0.003 (2)−0.009 (2)−0.002 (2)
C40.0313 (16)0.070 (2)0.058 (2)0.0012 (16)0.0062 (16)0.0053 (18)
C50.044 (2)0.069 (3)0.077 (3)0.0068 (18)0.009 (2)0.004 (2)
C60.069 (2)0.073 (2)0.0458 (19)0.006 (2)0.011 (2)−0.0021 (18)
C70.060 (2)0.061 (2)0.047 (2)−0.0053 (19)−0.0032 (18)0.0004 (17)
C80.0352 (17)0.060 (2)0.0426 (18)−0.0023 (15)−0.0007 (15)0.0044 (16)
C90.0375 (16)0.0554 (19)0.0447 (17)−0.0043 (15)−0.0028 (16)0.0030 (16)

Geometric parameters (Å, °)

N—O31.214 (4)C3—H3A0.97
N—O21.219 (3)C3—H3B0.97
N—C81.453 (4)C4—C51.360 (5)
O1—C91.347 (4)C4—C91.396 (4)
O1—C21.492 (4)C5—C61.384 (5)
C1—C21.420 (6)C5—H5A0.93
C1—H1A0.96C6—C71.367 (5)
C1—H1B0.96C6—H6A0.93
C1—H1C0.96C7—C81.404 (4)
C2—C31.520 (6)C7—H7A0.93
C2—H2A0.98C8—C91.382 (4)
C3—C41.508 (5)
O3—N—O2123.0 (3)C2—C3—H3B111.1
O3—N—C8118.6 (3)H3A—C3—H3B109.0
O2—N—C8118.4 (3)C5—C4—C9120.7 (3)
C9—O1—C2108.2 (3)C5—C4—C3131.8 (3)
C2—C1—H1A109.5C9—C4—C3107.5 (3)
C2—C1—H1B109.5C4—C5—C6119.5 (3)
H1A—C1—H1B109.5C4—C5—H5A120.3
C2—C1—H1C109.5C6—C5—H5A120.3
H1A—C1—H1C109.5C7—C6—C5121.2 (3)
H1B—C1—H1C109.5C7—C6—H6A119.4
C1—C2—O1109.7 (4)C5—C6—H6A119.4
C1—C2—C3119.9 (4)C6—C7—C8119.6 (3)
O1—C2—C3105.0 (3)C6—C7—H7A120.2
C1—C2—H2A107.2C8—C7—H7A120.2
O1—C2—H2A107.2C9—C8—C7119.2 (3)
C3—C2—H2A107.2C9—C8—N122.3 (3)
C4—C3—C2103.5 (3)C7—C8—N118.4 (3)
C4—C3—H3A111.1O1—C9—C8126.9 (3)
C2—C3—H3A111.1O1—C9—C4113.3 (3)
C4—C3—H3B111.1C8—C9—C4119.8 (3)
C9—O1—C2—C1145.4 (4)O2—N—C8—C95.3 (5)
C9—O1—C2—C315.4 (4)O3—N—C8—C75.9 (5)
C1—C2—C3—C4−139.3 (4)O2—N—C8—C7−175.1 (3)
O1—C2—C3—C4−15.5 (5)C2—O1—C9—C8172.0 (4)
C2—C3—C4—C5−170.7 (4)C2—O1—C9—C4−8.9 (4)
C2—C3—C4—C910.9 (5)C7—C8—C9—O1−179.7 (3)
C9—C4—C5—C6−0.2 (6)N—C8—C9—O10.0 (6)
C3—C4—C5—C6−178.4 (4)C7—C8—C9—C41.3 (5)
C4—C5—C6—C71.2 (6)N—C8—C9—C4−179.1 (3)
C5—C6—C7—C8−0.8 (6)C5—C4—C9—O1179.8 (3)
C6—C7—C8—C9−0.4 (5)C3—C4—C9—O1−1.6 (4)
C6—C7—C8—N180.0 (3)C5—C4—C9—C8−1.0 (6)
O3—N—C8—C9−173.7 (3)C3—C4—C9—C8177.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2613).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Enraf–Nonius (1985). CAD-4 Software Enraf-Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Majumdar, K. C., Alam, S. & Chattopadhyay, B. (2008). Tetrahedron, 64, 597–643.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography