PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m963–m964.
Published online 2008 June 28. doi:  10.1107/S1600536808018953
PMCID: PMC2961818

Dieth­yl[N-(3-meth­oxy-2-oxidobenzyl­idene)-N′-(oxidomethyl­ene)hydrazine-κ3 O,N,O′]tin(IV)

Abstract

In the mol­ecule of the title compound, [Sn(C2H5)2(C9H8N2O3)], the Sn atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two O and one N atoms of the tridentate Schiff base ligand in the equatorial plane, and by two C atoms of ethyl groups in the axial positions. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For related literature, see: Chen et al. (2006 [triangle]); Shuja et al. (2007a [triangle],b [triangle],c [triangle]); Shuja et al. (2008 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m963-scheme1.jpg

Experimental

Crystal data

  • [Sn(C2H5)2(C9H8N2O3)]
  • M r = 368.98
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m963-efi1.jpg
  • a = 8.2485 (3) Å
  • b = 9.8609 (4) Å
  • c = 10.4501 (4) Å
  • α = 63.521 (2)°
  • β = 68.967 (1)°
  • γ = 77.803 (2)°
  • V = 708.79 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.81 mm−1
  • T = 296 (2) K
  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.650, T max = 0.720
  • 14275 measured reflections
  • 3603 independent reflections
  • 3458 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.016
  • wR(F 2) = 0.063
  • S = 1.02
  • 3603 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018953/hk2477sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018953/hk2477Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore, and for financial support to SS for PhD studies under the Indigenous Scholarship Scheme (PIN Code: 042–111889).

supplementary crystallographic information

Comment

In continuation of our efforts to synthesize various Schiff base ligands of substituted salicylaldehydes with hydrazides, aminoacids and their organotin derivatives (Shuja et al., 2007a,b,c; Shuja et al., 2008), we report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the Sn atom is five-coordinated in distorted trigonal bipyramidal configuration (Table 1) by two O and one N atoms of the tridentate Schiff base ligand in the equatorial plane, and two C atoms of diethyl groups in the axial positions. The bond lengths and angles are within normal ranges, which are comparable with the corresponding values in (3-methoxy-2-oxidobenzaldehyde benzoylhydrazonato)dimethyltin(IV), (II) (Chen et al., 2006) and (2,2'-bipyridine-κ2N,N'){[(3-methoxy-2-oxidobenzylidene -κO2)hydrazono]methanolato-κ2N2,O}dimethyltin(IV), (III) (Shuja et al., 2008). The Sn1-C9 [2.1217 (18) Å] and Sn1-C11 [2.1219 (19) Å] bonds in (I) are reported as 2.099 (4) and 2.102 (4) Å in (II) and 2.097 (3) and 2.098 (3) Å in (III). On the other hand, the Sn1-O1 [2.1888 (13) Å] and Sn1-O2 [2.2162 (14) Å] bonds in (I) are reported as 2.131 (3) and 2.178 (3) Å in (II) and 2.1572 (14) and 2.2658 (15) Å in (III), while the Sn1-N1 [2.2271 (15) Å] bond in (I) is reported as 2.188 (3) Å in (II) and 2.2980 (18) Å in (III).

Rings A (Sn1/O2/N1/N2/C8) and C (C1-C6) are, of course, planar, and the dihedral angle between them is A/C = 7.96 (3)°. Ring B (Sn1/O1/N1/C1/C6/C7) adopts flattened-boat [[var phi] = -57.24 (2)° and θ = 107.39 (3)°] conformation, having total puckering amplitude, QT, of 0.453 (3) Å (Cremer & Pople, 1975).

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, N-(3-methoxy-2-hydroxybenzylidene)- formichydrazide (0.58 g, 3.0 mmol) and Et3N (0.84 ml, 6 mmol) were added to dry toluene (100 ml) in a 250 ml round bottom flask equipped with a reflux condenser. Diethyltin(IV) dichloride (0.74 g, 3.0 mmol) dissolved in dry toluene (20 ml) was then added. The reaction mixture was stirred at room temperature for 5 h and allowed to stand overnight. The formed Et3N-HCl was filtered off and the clear yellow solution was evaporated on a rotary evaporator under reduced pressure. Crystals of (I) were obtained by recrystallization from a chloroform solution.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[Sn(C2H5)2(C9H8N2O3)]Z = 2
Mr = 368.98F000 = 368
Triclinic, P1Dx = 1.729 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.2485 (3) ÅCell parameters from 3603 reflections
b = 9.8609 (4) Åθ = 2.3–28.7º
c = 10.4501 (4) ŵ = 1.81 mm1
α = 63.521 (2)ºT = 296 (2) K
β = 68.967 (1)ºPrismatic, yellow
γ = 77.803 (2)º0.30 × 0.20 × 0.18 mm
V = 708.79 (5) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer3603 independent reflections
Radiation source: fine-focus sealed tube3458 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 7.4 pixels mm-1θmax = 28.7º
T = 296(2) Kθmin = 2.3º
ω scansh = −11→11
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −13→13
Tmin = 0.650, Tmax = 0.720l = −14→14
14275 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.063  w = 1/[σ2(Fo2) + (0.0503P)2 + 0.0901P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3603 reflectionsΔρmax = 0.39 e Å3
226 parametersΔρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.134568 (12)0.080659 (11)0.280902 (10)0.02876 (6)
O10.07311 (18)0.14980 (15)0.46603 (15)0.0333 (3)
O20.2427 (2)0.11910 (19)0.04108 (16)0.0510 (4)
O3−0.04789 (19)0.17238 (16)0.73028 (15)0.0400 (3)
N10.2910 (2)0.28451 (17)0.15785 (16)0.0343 (3)
N20.3750 (3)0.3247 (2)0.0026 (2)0.0446 (4)
C10.1382 (2)0.25342 (18)0.47969 (19)0.0276 (3)
C20.0784 (2)0.26822 (19)0.6190 (2)0.0303 (3)
C30.1440 (3)0.3722 (2)0.6396 (2)0.0396 (4)
H30.10240.37900.73200.048*
C40.2714 (3)0.4670 (3)0.5238 (3)0.0478 (5)
H40.31660.53540.53920.057*
C50.3298 (3)0.4587 (2)0.3872 (3)0.0447 (4)
H50.41440.52250.30950.054*
C60.2634 (2)0.3545 (2)0.3624 (2)0.0334 (3)
C70.3300 (3)0.3656 (2)0.2102 (2)0.0365 (4)
H70.40950.43900.14270.044*
C80.3378 (3)0.2327 (3)−0.0403 (2)0.0443 (4)
H80.38570.2517−0.14160.053*
C9−0.1144 (2)0.1569 (2)0.2494 (2)0.0394 (4)
H9A−0.13010.11490.18690.047*
H9B−0.20290.11880.34600.047*
C10−0.1400 (4)0.3268 (3)0.1781 (5)0.0777 (9)
H10A−0.25450.35440.16680.116*
H10B−0.05470.36530.08130.116*
H10C−0.12740.36920.24050.116*
C110.3323 (3)−0.0893 (2)0.3408 (2)0.0413 (4)
H11A0.2880−0.15640.44570.050*
H11B0.3580−0.14910.28240.050*
C120.4986 (3)−0.0295 (3)0.3172 (4)0.0713 (8)
H12A0.5810−0.11290.34680.107*
H12B0.47550.02760.37670.107*
H12C0.54560.03500.21320.107*
C13−0.1177 (4)0.1920 (3)0.8682 (2)0.0545 (6)
H13A−0.20390.11970.93740.082*
H13B−0.17020.29300.84930.082*
H13C−0.02590.17640.91030.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.02673 (8)0.03389 (8)0.02623 (8)−0.00313 (5)−0.00603 (5)−0.01366 (6)
O10.0369 (7)0.0368 (6)0.0307 (6)−0.0122 (5)−0.0037 (5)−0.0182 (5)
O20.0609 (10)0.0622 (10)0.0326 (7)−0.0265 (8)0.0021 (6)−0.0241 (7)
O30.0483 (8)0.0442 (7)0.0324 (6)−0.0180 (6)−0.0017 (6)−0.0213 (6)
N10.0332 (7)0.0351 (7)0.0284 (7)−0.0083 (6)−0.0023 (6)−0.0103 (6)
N20.0493 (10)0.0467 (9)0.0286 (8)−0.0174 (8)0.0030 (7)−0.0126 (7)
C10.0275 (7)0.0272 (7)0.0323 (7)−0.0016 (6)−0.0111 (6)−0.0139 (6)
C20.0313 (8)0.0292 (8)0.0339 (8)−0.0025 (6)−0.0118 (7)−0.0140 (7)
C30.0465 (10)0.0410 (9)0.0420 (9)−0.0065 (8)−0.0148 (8)−0.0233 (8)
C40.0537 (12)0.0470 (11)0.0559 (12)−0.0178 (9)−0.0141 (10)−0.0276 (10)
C50.0468 (11)0.0409 (10)0.0481 (11)−0.0190 (8)−0.0081 (9)−0.0172 (9)
C60.0321 (8)0.0319 (8)0.0376 (8)−0.0059 (6)−0.0095 (7)−0.0143 (7)
C70.0354 (9)0.0332 (8)0.0356 (9)−0.0105 (7)−0.0023 (7)−0.0123 (7)
C80.0459 (10)0.0511 (11)0.0283 (8)−0.0121 (9)0.0007 (7)−0.0149 (8)
C90.0319 (8)0.0483 (10)0.0361 (9)−0.0043 (7)−0.0132 (7)−0.0124 (8)
C100.0660 (17)0.0505 (14)0.112 (3)0.0168 (13)−0.0459 (18)−0.0229 (16)
C110.0344 (9)0.0382 (9)0.0488 (10)0.0038 (7)−0.0101 (8)−0.0200 (8)
C120.0440 (13)0.0669 (16)0.118 (3)0.0075 (11)−0.0433 (15)−0.0406 (17)
C130.0744 (16)0.0556 (12)0.0370 (10)−0.0203 (11)−0.0005 (10)−0.0274 (10)

Geometric parameters (Å, °)

Sn1—C112.1216 (19)C5—H50.9300
Sn1—C92.1217 (18)C6—C71.444 (3)
Sn1—O12.1888 (13)C7—H70.9300
Sn1—O22.2162 (14)C8—H80.9300
Sn1—N12.2271 (15)C9—C101.502 (3)
O1—C11.3304 (19)C9—H9A0.9700
O2—C81.278 (3)C9—H9B0.9700
O3—C21.377 (2)C10—H10A0.9600
O3—C131.433 (2)C10—H10B0.9600
N1—C71.291 (2)C10—H10C0.9600
N1—N21.416 (2)C11—C121.504 (3)
N2—C81.304 (3)C11—H11A0.9700
C1—C61.414 (2)C11—H11B0.9700
C1—C21.424 (2)C12—H12A0.9600
C2—C31.380 (2)C12—H12B0.9600
C3—C41.392 (3)C12—H12C0.9600
C3—H30.9300C13—H13A0.9600
C4—C51.368 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.414 (2)
C11—Sn1—C9153.45 (9)N1—C7—H7116.5
C11—Sn1—O197.19 (7)C6—C7—H7116.5
C9—Sn1—O193.40 (7)O2—C8—N2127.32 (18)
C11—Sn1—O292.71 (8)O2—C8—H8116.3
C9—Sn1—O288.78 (7)N2—C8—H8116.3
O1—Sn1—O2152.79 (5)C10—C9—Sn1113.26 (16)
C11—Sn1—N199.42 (7)C10—C9—H9A108.9
C9—Sn1—N1106.13 (7)Sn1—C9—H9A108.9
O1—Sn1—N182.07 (5)C10—C9—H9B108.9
O2—Sn1—N171.30 (6)Sn1—C9—H9B108.9
C1—O1—Sn1131.78 (11)H9A—C9—H9B107.7
C8—O2—Sn1114.11 (13)C9—C10—H10A109.5
C2—O3—C13116.47 (15)C9—C10—H10B109.5
C7—N1—N2113.77 (15)H10A—C10—H10B109.5
C7—N1—Sn1129.00 (12)C9—C10—H10C109.5
N2—N1—Sn1116.91 (12)H10A—C10—H10C109.5
C8—N2—N1110.32 (16)H10B—C10—H10C109.5
O1—C1—C6124.13 (15)C12—C11—Sn1114.55 (16)
O1—C1—C2119.40 (15)C12—C11—H11A108.6
C6—C1—C2116.45 (15)Sn1—C11—H11A108.6
O3—C2—C3122.78 (16)C12—C11—H11B108.6
O3—C2—C1115.59 (14)Sn1—C11—H11B108.6
C3—C2—C1121.62 (17)H11A—C11—H11B107.6
C2—C3—C4120.80 (18)C11—C12—H12A109.5
C2—C3—H3119.6C11—C12—H12B109.5
C4—C3—H3119.6H12A—C12—H12B109.5
C5—C4—C3119.43 (17)C11—C12—H12C109.5
C5—C4—H4120.3H12A—C12—H12C109.5
C3—C4—H4120.3H12B—C12—H12C109.5
C4—C5—C6120.97 (19)O3—C13—H13A109.5
C4—C5—H5119.5O3—C13—H13B109.5
C6—C5—H5119.5H13A—C13—H13B109.5
C1—C6—C5120.65 (17)O3—C13—H13C109.5
C1—C6—C7124.88 (16)H13A—C13—H13C109.5
C5—C6—C7114.44 (17)H13B—C13—H13C109.5
N1—C7—C6126.99 (17)
C11—Sn1—O1—C189.09 (16)C6—C1—C2—C3−2.2 (3)
C9—Sn1—O1—C1−115.31 (16)O3—C2—C3—C4−179.90 (19)
O2—Sn1—O1—C1−21.4 (2)C1—C2—C3—C40.1 (3)
N1—Sn1—O1—C1−9.48 (15)C2—C3—C4—C51.3 (3)
C11—Sn1—O2—C8−97.99 (17)C3—C4—C5—C6−0.5 (4)
C9—Sn1—O2—C8108.54 (17)O1—C1—C6—C5−178.21 (17)
O1—Sn1—O2—C813.5 (3)C2—C1—C6—C53.0 (3)
N1—Sn1—O2—C81.05 (16)O1—C1—C6—C73.8 (3)
C11—Sn1—N1—C7−85.14 (18)C2—C1—C6—C7−175.00 (18)
C9—Sn1—N1—C7102.15 (18)C4—C5—C6—C1−1.7 (3)
O1—Sn1—N1—C710.88 (17)C4—C5—C6—C7176.4 (2)
O2—Sn1—N1—C7−174.82 (19)N2—N1—C7—C6178.61 (19)
C11—Sn1—N1—N287.99 (15)Sn1—N1—C7—C6−8.1 (3)
C9—Sn1—N1—N2−84.72 (15)C1—C6—C7—N1−1.9 (3)
O1—Sn1—N1—N2−175.99 (16)C5—C6—C7—N1−180.0 (2)
O2—Sn1—N1—N2−1.69 (14)Sn1—O2—C8—N2−0.3 (3)
C7—N1—N2—C8176.23 (19)N1—N2—C8—O2−1.2 (3)
Sn1—N1—N2—C82.1 (2)C11—Sn1—C9—C10−173.4 (2)
Sn1—O1—C1—C64.8 (3)O1—Sn1—C9—C1073.0 (2)
Sn1—O1—C1—C2−176.49 (12)O2—Sn1—C9—C10−79.8 (2)
C13—O3—C2—C33.9 (3)N1—Sn1—C9—C10−9.7 (2)
C13—O3—C2—C1−176.17 (18)C9—Sn1—C11—C12176.3 (2)
O1—C1—C2—O3−1.0 (2)O1—Sn1—C11—C12−71.0 (2)
C6—C1—C2—O3177.81 (15)O2—Sn1—C11—C1283.6 (2)
O1—C1—C2—C3178.91 (17)N1—Sn1—C11—C1212.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···O2i0.962.343.068 (4)132

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2477).

References

  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Chen, S.-W., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1654–m1655.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shuja, S., Ali, S., Khalid, N., Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m1025–m1026.
  • Shuja, S., Ali, S., Khalid, N. & Parvez, M. (2007c). Acta Cryst. E63, o879–o880.
  • Shuja, S., Ali, S., Meetsma, A., Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m1130–m1132.
  • Shuja, S., Ali, S., Tahir, M. N., Khalid, N. & Khan, I. U. (2008). Acta Cryst. E64, m531–m532. [PMC free article] [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography