PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m856.
Published online 2008 June 7. doi:  10.1107/S1600536808015821
PMCID: PMC2961816

{Bis[4-(2-pyrid­yl)pyrimidin-2-yl] sulfide}dibromidocobalt(II)

Abstract

The title compound, [CoBr2(C18H12N6S)], is a mononuclear complex in which a twofold rotation axis passes through the Co and S atoms. The CoII center is six-coordinated by four N atoms from one bis­[4-(2-pyrid­yl)pyrimidin-2-yl] sulfide (L) ligand and two bromide anions, forming an octa­hedral coordination geometry, where the four donor N atoms are located in the equatorial plane and the Br atoms occupy the axial positions. The sum of the bond angles around the Co atom in the equatorial plane is 360.5°, with the four N atoms and the central Co atom almost coplanar. In the crystal structure, the mononuclear units are linked by π–π stacking inter­actions (the inter­planar distances are 3.469 and 3.533 Å, and the corresponding centroid–centroid distances are 3.791 and 3.896 Å) into a three-dimensional supra­molecular network.

Related literature

For related literature, see: de Faria et al. (2007 [triangle]); Teles et al. (2006 [triangle]); Li & Bu (2008 [triangle]); Bridson & Walker (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m856-scheme1.jpg

Experimental

Crystal data

  • [CoBr2(C18H12N6S)]
  • M r = 563.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m856-efi2.jpg
  • a = 15.191 (5) Å
  • b = 10.350 (4) Å
  • c = 13.338 (5) Å
  • β = 112.312 (5)°
  • V = 1940.0 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.13 mm−1
  • T = 294 (2) K
  • 0.20 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.375, T max = 0.489
  • 5288 measured reflections
  • 1970 independent reflections
  • 1456 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.061
  • S = 1.04
  • 1970 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015821/bq2083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015821/bq2083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Nankai University for supporting this work.

supplementary crystallographic information

Comment

Semirigid thioether ligands containing heterocycle with N-donors are gradually used in constructing coordination architectures with novel topologies and useful functions in recent years (de Faria et al., 2007; Teles et al., 2006). The pyridine and pyrimidine groups as normal heterocycle were used to incorporate with different mercapto units to form a series of bi- and multi-dentate ligands, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Li & Bu, 2008). Herein, we synthesized a semirigid thioether ligand bis[4-(pyridin-2-yl)pyrimidin-2-yl]sulfide (L) as well as its CoII complex, [Co(C18H12N6S)Br2] (I), and report the crystal structure of this complex.

In the molecule of (I), (Fig. 1), the bond lengths and angles are generally within normal ranges (Bridson & Walker, 1970). The CoII center is six-coordinated by four N atoms from one L ligand and two bromine ions, forming an octahedral coordination geometry. The bond angles N1—Co1—N2, N2—Co1—N2A, N2A—Co1—N1A and N1A—Co1—N1 are 78.04 (9), 96.18 (1), 78.04 (9) and 108.24 (1)°, respectively. The sum of these angles is 360.5 (2)°, suggesting that N1, N2, N1A, N2A and Co1 are almost in a plane. In the crystal structure of (I), the mononuclear units are interconnected by two π···π stacking interactions between the rings (N1/C1-C5) and (N2/N3/C6-C9) forming a three-dimensional supramolecular network.

Experimental

The ligand bis[4-(pyridin-2-yl)pyrimidin-2-yl]sulfide (L) was synthesized according to the following method. Some amount of potassium 4-(pyridin-2-yl)pyrimine-2-thiolate was dissolved in the distilled water, and the dense hydrochloric acid was added drop by drop with slowly stirring. A lot of yellow precipitate appeared and then gradually disappear when the dense hydrochloric acid was continuously added. After complete disappearance of the yellow precipitate, the potassium hydroxide solution was added to the mixture until another kind of precipitate was obtained largely. The crude product was filtered and washed with the distilled water three times, and recrystallized with the mixture of chloroform and hexane (v/v=1:1), yield: 60%. The title coordination complex, (I), was synthesized according to the following method. A buffer layer of chloroform/methanol (v/v=2:1, 5 ml) was carefully layered over a chloroform solution (4 mL) of L (6.8 mg, 0.02 mmol). Then a solution of CoBr2 (4.4 mg, 0.02 mmol) in methanol (4 ml) was layered on the buffer layer. Red block crystals suitable for X-ray analysis were collected after five weeks, yield: 30%.

Refinement

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius [symmetry code: (i) -x + 1, y, -z + 1/2].

Crystal data

[CoBr2(C18H12N6S)]F000 = 1100
Mr = 563.15Dx = 1.928 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 2104 reflections
a = 15.191 (5) Åθ = 2.6–26.1º
b = 10.350 (4) ŵ = 5.13 mm1
c = 13.338 (5) ÅT = 294 (2) K
β = 112.312 (5)ºBlock, red
V = 1940.0 (12) Å30.20 × 0.18 × 0.14 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID-S diffractometer1970 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.037
T = 294(2) Kθmax = 26.3º
ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −18→16
Tmin = 0.375, Tmax = 0.489k = −12→8
5288 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.061  w = 1/[σ2(Fo2) + (0.0192P)2 + 2.0266P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1970 reflectionsΔρmax = 0.39 e Å3
128 parametersΔρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.47796 (2)0.71842 (3)0.43535 (3)0.04031 (12)
C10.3781 (2)0.4680 (3)0.1581 (3)0.0462 (9)
H10.43580.42480.17630.055*
C20.2944 (3)0.3973 (3)0.1140 (3)0.0540 (10)
H20.29620.30850.10460.065*
C30.2092 (3)0.4609 (4)0.0846 (3)0.0515 (10)
H30.15220.41530.05620.062*
C40.2086 (2)0.5924 (3)0.0976 (3)0.0425 (9)
H40.15140.63720.07650.051*
C50.29483 (19)0.6578 (3)0.1429 (2)0.0297 (7)
C60.30020 (19)0.7994 (3)0.1562 (2)0.0302 (7)
C70.2209 (2)0.8785 (3)0.1266 (3)0.0415 (8)
H70.15980.84410.10020.050*
C80.2354 (2)1.0094 (4)0.1374 (3)0.0457 (9)
H80.18271.06360.11770.055*
C90.3946 (2)0.9792 (3)0.2033 (2)0.0353 (7)
Co10.50000.71573 (5)0.25000.02984 (15)
N10.37930 (17)0.5954 (2)0.1755 (2)0.0332 (6)
N20.38904 (15)0.8512 (2)0.1956 (2)0.0294 (6)
N30.3215 (2)1.0622 (3)0.1749 (2)0.0429 (7)
S10.50001.07169 (11)0.25000.0597 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02302 (16)0.0472 (2)0.0458 (2)−0.00028 (14)0.00748 (13)0.00055 (16)
C10.044 (2)0.0312 (19)0.052 (2)−0.0043 (15)0.0054 (17)−0.0006 (15)
C20.067 (3)0.041 (2)0.045 (2)−0.0245 (19)0.011 (2)−0.0037 (17)
C30.042 (2)0.060 (3)0.045 (2)−0.0292 (19)0.0083 (18)0.0007 (18)
C40.0269 (17)0.060 (2)0.038 (2)−0.0124 (15)0.0093 (15)0.0018 (16)
C50.0214 (15)0.0413 (18)0.0251 (17)−0.0055 (13)0.0072 (13)0.0007 (13)
C60.0209 (14)0.043 (2)0.0235 (16)0.0028 (13)0.0047 (12)0.0025 (13)
C70.0206 (16)0.061 (2)0.040 (2)0.0065 (15)0.0089 (14)0.0005 (17)
C80.0348 (19)0.058 (2)0.041 (2)0.0238 (17)0.0110 (16)0.0041 (17)
C90.0355 (18)0.0325 (17)0.0349 (19)0.0081 (14)0.0100 (15)0.0010 (14)
Co10.0159 (3)0.0224 (3)0.0438 (4)0.0000.0030 (2)0.000
N10.0245 (13)0.0318 (15)0.0373 (16)−0.0042 (10)0.0051 (12)0.0002 (11)
N20.0203 (12)0.0295 (14)0.0343 (15)0.0032 (10)0.0060 (11)0.0024 (11)
N30.0433 (17)0.0387 (16)0.0437 (18)0.0201 (13)0.0130 (14)0.0052 (13)
S10.0424 (7)0.0221 (6)0.0980 (12)0.0000.0079 (7)0.000

Geometric parameters (Å, °)

Br1—Co12.6178 (10)C7—C81.371 (5)
C1—N11.338 (4)C7—H70.9300
C1—C21.388 (5)C8—N31.328 (4)
C1—H10.9300C8—H80.9300
C2—C31.371 (5)C9—N21.329 (4)
C2—H20.9300C9—N31.339 (4)
C3—C41.373 (5)C9—S11.764 (3)
C3—H30.9300Co1—N2i2.099 (2)
C4—C51.392 (4)Co1—N22.099 (2)
C4—H40.9300Co1—N12.125 (2)
C5—N11.353 (4)Co1—N1i2.125 (2)
C5—C61.475 (4)Co1—Br1i2.6178 (10)
C6—N21.359 (3)S1—C9i1.764 (3)
C6—C71.385 (4)
N1—C1—C2122.9 (3)N2—C9—S1126.2 (2)
N1—C1—H1118.6N3—C9—S1107.2 (2)
C2—C1—H1118.6N2i—Co1—N296.18 (13)
C3—C2—C1118.8 (3)N2i—Co1—N1171.98 (9)
C3—C2—H2120.6N2—Co1—N178.04 (9)
C1—C2—H2120.6N2i—Co1—N1i78.04 (9)
C2—C3—C4119.4 (3)N2—Co1—N1i171.98 (9)
C2—C3—H3120.3N1—Co1—N1i108.24 (13)
C4—C3—H3120.3N2i—Co1—Br192.32 (7)
C3—C4—C5119.1 (3)N2—Co1—Br186.87 (7)
C3—C4—H4120.4N1—Co1—Br192.90 (7)
C5—C4—H4120.4N1i—Co1—Br187.82 (7)
N1—C5—C4121.9 (3)N2i—Co1—Br1i86.87 (7)
N1—C5—C6115.7 (2)N2—Co1—Br1i92.32 (7)
C4—C5—C6122.4 (3)N1—Co1—Br1i87.82 (7)
N2—C6—C7120.4 (3)N1i—Co1—Br1i92.90 (7)
N2—C6—C5116.1 (2)Br1—Co1—Br1i178.78 (3)
C7—C6—C5123.5 (3)C1—N1—C5117.8 (3)
C8—C7—C6117.8 (3)C1—N1—Co1127.7 (2)
C8—C7—H7121.1C5—N1—Co1114.53 (19)
C6—C7—H7121.1C9—N2—C6116.6 (2)
N3—C8—C7122.8 (3)C9—N2—Co1128.34 (19)
N3—C8—H8118.6C6—N2—Co1114.81 (19)
C7—C8—H8118.6C8—N3—C9115.7 (3)
N2—C9—N3126.6 (3)C9—S1—C9i114.3 (2)
N1—C1—C2—C31.5 (6)Br1—Co1—N1—C579.4 (2)
C1—C2—C3—C41.2 (6)Br1i—Co1—N1—C5−99.7 (2)
C2—C3—C4—C5−1.6 (5)N3—C9—N2—C6−0.9 (4)
C3—C4—C5—N1−0.7 (5)S1—C9—N2—C6−179.2 (2)
C3—C4—C5—C6178.0 (3)N3—C9—N2—Co1−174.6 (2)
N1—C5—C6—N22.5 (4)S1—C9—N2—Co17.1 (4)
C4—C5—C6—N2−176.2 (3)C7—C6—N2—C9−0.2 (4)
N1—C5—C6—C7179.6 (3)C5—C6—N2—C9177.1 (3)
C4—C5—C6—C70.9 (5)C7—C6—N2—Co1174.4 (2)
N2—C6—C7—C80.7 (5)C5—C6—N2—Co1−8.4 (3)
C5—C6—C7—C8−176.4 (3)N2i—Co1—N2—C9−3.7 (2)
C6—C7—C8—N3−0.1 (5)N1—Co1—N2—C9−178.0 (3)
C2—C1—N1—C5−3.7 (5)Br1—Co1—N2—C988.3 (2)
C2—C1—N1—Co1176.2 (3)Br1i—Co1—N2—C9−90.8 (2)
C4—C5—N1—C13.3 (4)N2i—Co1—N2—C6−177.5 (2)
C6—C5—N1—C1−175.5 (3)N1—Co1—N2—C68.2 (2)
C4—C5—N1—Co1−176.7 (2)Br1—Co1—N2—C6−85.46 (19)
C6—C5—N1—Co14.6 (3)Br1i—Co1—N2—C695.45 (19)
N2—Co1—N1—C1173.2 (3)C7—C8—N3—C9−0.9 (5)
N1i—Co1—N1—C1−12.0 (2)N2—C9—N3—C81.5 (5)
Br1—Co1—N1—C1−100.6 (3)S1—C9—N3—C8−180.0 (2)
Br1i—Co1—N1—C180.4 (3)N2—C9—S1—C9i−3.8 (2)
N2—Co1—N1—C5−6.8 (2)N3—C9—S1—C9i177.7 (3)
N1i—Co1—N1—C5168.0 (2)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2083).

References

  • Bridson, M. E. & Walker, W. R. (1970). Aust. J. Chem.23, 1191–1197.
  • Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Faria, D. M. de, Yoshida, M. I., Pinheiro, C. B., Guedes, K. J., Krambrock, K., Diniz, R., de Oliveira, L. F. C. & Machado, F. C. (2007). Polyhedron, 26, 4525–4532.
  • Li, J. R. & Bu, X. H. (2008). Eur. J. Inorg. Chem. pp. 27–40.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613–4618.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography