PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1250.
Published online 2008 June 13. doi:  10.1107/S160053680801622X
PMCID: PMC2961815

(1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18-Undeca­chloro­penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­deca-7,15-diene

Abstract

The title compound, C18H13Cl11, is an undecachlorinated commercial flame retardant. The asymmetric unit contains two independent half-mol­ecules. The complete mol­ecules are generated by crystallographic inversion symmetry, causing the terminal H atoms and one of the Cl atoms to be disordered equally over two sites in each mol­ecule. The central eight-membered rings are in chair-type conformations. In the crystal structure, there is a single weak inter­molecular C—H(...)Cl hydrogen bond.

Related literature

For related literature, see: Riddell et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1250-scheme1.jpg

Experimental

Crystal data

  • C18H13Cl11
  • M r = 619.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1250-efi1.jpg
  • a = 13.3129 (5) Å
  • b = 12.1263 (6) Å
  • c = 14.7229 (7) Å
  • β = 99.505 (3)°
  • V = 2344.18 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.31 mm−1
  • T = 150 (1) K
  • 0.26 × 0.20 × 0.15 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.715, T max = 0.825
  • 15654 measured reflections
  • 5338 independent reflections
  • 3481 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.118
  • S = 1.05
  • 5338 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801622X/pk2101sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801622X/pk2101Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

For background information and related references see the previous paper (Riddell et al., 2008). Dechlorane Plus (DP) is a commercial chlorinated flame retardant used in styrenic plastics (http://www.inchem.org/documents/ehc/ehc/ehc192.htm) to protect human life and property against fires. We have synthesized the dechlorinated compound (1R,2R,5R,6S,9R,10S,13S,14S,18R)-1,6,7,8,9,14,15,16,17,17,18- undecachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene. GC/MS and 1H NMR spectroscopy have confirmed the basic structure of as having the DP-like structure with only 11 chlorine atoms. An NOE NMR experiment also strongly indicated that the proton on the bridging carbon atom was facing towards the cyclooctadiene ring since a positive through space interaction was observed. However, an X-ray structure determination was required to positively confirm the stereochemistry.

The asymmetric unit contains two independent half molecules. The symmetry complete molecules are generated by crystallographic inversion symmetry, causing atoms Cl6A and Cl6B, as well as the H atoms bonded to C9A and C9B to be disordered over two sites with equal occupancies. In both independent molecules the geometric parameters are the same within experimental error. The asymmetric unit is shown in Fig. 2. In the crystal structure there is a single weak intermolecular C—H···Cl interaction (Table 1).

Experimental

The synthesis of the title compound was carried out at Wellington Laboratories using proprietary methods. The compound was isolated and purified using chromatographic techniques. For single-crystal x-ray crystallography, colourless crystals were grown from a solution in toluene.

Refinement

All hydrogen atoms were placed in calculated positions with C—H distances of 0.99 and 1.00 Å and they were included in the refinement in a riding-model approximation with Uiso = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The disorder is not shown and the atoms labeled with lower case suffixes a and b are related by the symmetry operators (-x, -y+1, -z+1) and (-x+1, ...

Crystal data

C18H13Cl11F000 = 1232
Mr = 619.23Dx = 1.755 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15654 reflections
a = 13.3129 (5) Åθ = 2.8–27.5º
b = 12.1263 (6) ŵ = 1.31 mm1
c = 14.7229 (7) ÅT = 150 (1) K
β = 99.505 (3)ºBlock, colourless
V = 2344.18 (18) Å30.26 × 0.20 × 0.15 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD diffractometer5338 independent reflections
Radiation source: fine-focus sealed tube3481 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 27.5º
T = 150(2) Kθmin = 2.8º
[var phi] scans and ω scans with κ offsetsh = −17→17
Absorption correction: multi-scan(SORTAV; Blessing, 1995)k = −14→15
Tmin = 0.715, Tmax = 0.825l = −16→19
15654 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050  w = 1/[σ2(Fo2) + (0.0314P)2 + 4.5718P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.53 e Å3
5338 reflectionsΔρmin = −0.68 e Å3
272 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl1A0.12630 (8)0.59357 (8)0.23239 (6)0.0351 (3)
Cl2A−0.04105 (8)0.77914 (9)0.28215 (7)0.0390 (3)
Cl3A0.03958 (8)0.87394 (8)0.49922 (7)0.0371 (3)
Cl4A0.25958 (7)0.75232 (9)0.58340 (7)0.0375 (3)
Cl5A0.28655 (8)0.77926 (10)0.35627 (7)0.0449 (3)
Cl6A0.32477 (14)0.57426 (16)0.42481 (15)0.0351 (5)0.50
C1A0.0896 (3)0.5390 (3)0.4083 (2)0.0235 (8)
H1A0.12930.47100.39930.028*
C2A0.1294 (3)0.5849 (3)0.5085 (2)0.0229 (8)
H2A0.18540.53550.53840.027*
C3A0.0525 (3)0.5978 (3)0.5746 (2)0.0246 (8)
H3A1−0.00990.63310.54120.030*
H3A20.08170.64770.62540.030*
C4A−0.0227 (3)0.5119 (3)0.3837 (2)0.0268 (8)
H4A1−0.04120.50800.31580.032*
H4A2−0.06260.57240.40540.032*
C5A0.1236 (3)0.6328 (3)0.3464 (2)0.0255 (8)
C6A0.0612 (3)0.7346 (3)0.3593 (3)0.0263 (8)
C7A0.0923 (3)0.7720 (3)0.4438 (3)0.0243 (8)
C8A0.1776 (3)0.6973 (3)0.4878 (2)0.0245 (8)
C9A0.2268 (3)0.6680 (3)0.4039 (3)0.0289 (9)
H9C0.27390.60370.41700.035*0.50
Cl1B0.50434 (8)0.70192 (12)0.26767 (8)0.0573 (4)
Cl2B0.68792 (8)0.51251 (11)0.29107 (7)0.0488 (3)
Cl3B0.83732 (7)0.55922 (9)0.12642 (7)0.0400 (3)
Cl4B0.74566 (9)0.77648 (10)0.00260 (9)0.0501 (3)
Cl5B0.70173 (9)0.85653 (11)0.21603 (10)0.0647 (4)
Cl6B0.52623 (17)0.8699 (2)0.0840 (2)0.0609 (8)0.50
C1B0.5100 (3)0.6208 (3)0.0915 (3)0.0312 (9)
H1B0.44600.66470.07470.037*
C2B0.5781 (3)0.6426 (3)0.0152 (3)0.0306 (9)
H2B0.54100.6952−0.03080.037*
C3B0.6089 (3)0.5433 (3)−0.0368 (3)0.0310 (9)
H3B10.63330.48430.00790.037*
H3B20.66630.5644−0.06830.037*
C4B0.4792 (3)0.5024 (3)0.1091 (3)0.0304 (9)
H4B10.45860.49880.17060.037*
H4B20.53940.45420.11040.037*
C5B0.5738 (3)0.6757 (4)0.1780 (3)0.0362 (10)
C6B0.6701 (3)0.6059 (4)0.2039 (3)0.0344 (10)
C7B0.7274 (3)0.6241 (3)0.1398 (3)0.0324 (9)
C8B0.6712 (3)0.7049 (3)0.0715 (3)0.0343 (9)
C9B0.6180 (3)0.7760 (4)0.1363 (3)0.0444 (11)
H9D0.56300.82250.10080.053*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.0514 (6)0.0324 (5)0.0245 (5)−0.0025 (5)0.0149 (4)−0.0003 (4)
Cl2A0.0392 (6)0.0357 (6)0.0398 (6)0.0080 (5)−0.0005 (4)0.0127 (5)
Cl3A0.0473 (6)0.0243 (5)0.0446 (6)0.0049 (5)0.0217 (5)−0.0033 (4)
Cl4A0.0297 (5)0.0500 (7)0.0331 (5)−0.0137 (5)0.0057 (4)−0.0082 (5)
Cl5A0.0406 (6)0.0562 (7)0.0428 (6)−0.0200 (5)0.0212 (5)−0.0039 (5)
Cl6A0.0289 (10)0.0275 (10)0.0519 (13)0.0056 (8)0.0154 (9)0.0000 (9)
C1A0.0272 (18)0.0192 (19)0.025 (2)0.0036 (16)0.0068 (15)0.0029 (15)
C2A0.0234 (18)0.0228 (19)0.0222 (19)0.0048 (16)0.0031 (15)−0.0005 (15)
C3A0.0278 (19)0.024 (2)0.0225 (19)−0.0043 (16)0.0055 (15)0.0007 (16)
C4A0.034 (2)0.026 (2)0.0194 (19)−0.0004 (17)0.0010 (16)0.0025 (16)
C5A0.033 (2)0.024 (2)0.0217 (19)0.0011 (17)0.0105 (16)0.0037 (16)
C6A0.0250 (19)0.024 (2)0.031 (2)−0.0031 (16)0.0074 (16)0.0079 (16)
C7A0.0302 (19)0.0164 (18)0.029 (2)−0.0018 (16)0.0139 (16)−0.0012 (15)
C8A0.0234 (18)0.028 (2)0.0231 (19)−0.0042 (16)0.0059 (15)−0.0017 (16)
C9A0.0264 (19)0.031 (2)0.031 (2)0.0052 (17)0.0111 (16)0.0046 (17)
Cl1B0.0337 (6)0.0861 (10)0.0536 (8)0.0007 (6)0.0119 (5)−0.0381 (7)
Cl2B0.0441 (6)0.0722 (9)0.0271 (6)0.0022 (6)−0.0024 (5)0.0005 (5)
Cl3B0.0233 (5)0.0504 (7)0.0458 (6)0.0043 (5)0.0042 (4)−0.0118 (5)
Cl4B0.0484 (7)0.0451 (7)0.0570 (8)−0.0176 (6)0.0088 (5)−0.0010 (6)
Cl5B0.0413 (6)0.0622 (8)0.0884 (10)−0.0096 (6)0.0042 (6)−0.0458 (8)
Cl6B0.0358 (12)0.0373 (13)0.100 (2)0.0108 (10)−0.0158 (12)−0.0205 (13)
C1B0.0195 (18)0.040 (2)0.032 (2)0.0056 (18)−0.0011 (16)−0.0101 (19)
C2B0.0257 (19)0.030 (2)0.034 (2)0.0015 (17)−0.0028 (17)−0.0019 (17)
C3B0.0255 (19)0.038 (2)0.028 (2)−0.0051 (18)0.0023 (16)−0.0041 (18)
C4B0.0238 (19)0.042 (2)0.025 (2)−0.0002 (18)0.0016 (15)−0.0035 (18)
C5B0.0232 (19)0.048 (3)0.038 (2)0.0026 (19)0.0056 (17)−0.016 (2)
C6B0.027 (2)0.050 (3)0.024 (2)0.0022 (19)−0.0012 (16)−0.0133 (19)
C7B0.0218 (19)0.041 (2)0.033 (2)0.0013 (18)−0.0002 (16)−0.0141 (19)
C8B0.029 (2)0.033 (2)0.039 (2)−0.0032 (18)0.0017 (18)−0.0076 (19)
C9B0.031 (2)0.041 (3)0.058 (3)0.006 (2)−0.004 (2)−0.017 (2)

Geometric parameters (Å, °)

Cl1A—C5A1.751 (4)Cl1B—C5B1.761 (4)
Cl2A—C6A1.710 (4)Cl2B—C6B1.698 (4)
Cl3A—C7A1.696 (4)Cl3B—C7B1.701 (4)
Cl4A—C8A1.763 (4)Cl4B—C8B1.760 (4)
Cl5A—C9A1.769 (4)Cl5B—C9B1.772 (4)
Cl6A—C9A1.720 (4)Cl6B—C9B1.752 (5)
C1A—C4A1.515 (5)C1B—C4B1.527 (6)
C1A—C5A1.570 (5)C1B—C5B1.559 (5)
C1A—C2A1.584 (5)C1B—C2B1.579 (5)
C1A—H1A1.0000C1B—H1B1.0000
C2A—C3A1.533 (5)C2B—C3B1.518 (5)
C2A—C8A1.558 (5)C2B—C8B1.567 (5)
C2A—H2A1.0000C2B—H2B1.0000
C3A—C4Ai1.544 (5)C3B—C4Bii1.551 (5)
C3A—H3A10.9900C3B—H3B10.9900
C3A—H3A20.9900C3B—H3B20.9900
C4A—C3Ai1.544 (5)C4B—C3Bii1.551 (5)
C4A—H4A10.9900C4B—H4B10.9900
C4A—H4A20.9900C4B—H4B20.9900
C5A—C6A1.518 (5)C5B—C9B1.524 (7)
C5A—C9A1.548 (5)C5B—C6B1.531 (6)
C6A—C7A1.324 (5)C6B—C7B1.328 (5)
C7A—C8A1.512 (5)C7B—C8B1.511 (6)
C8A—C9A1.533 (5)C8B—C9B1.542 (6)
C4A—C1A—C5A112.7 (3)C4B—C1B—C5B112.8 (3)
C4A—C1A—C2A117.6 (3)C4B—C1B—C2B118.7 (3)
C5A—C1A—C2A101.6 (3)C5B—C1B—C2B102.2 (3)
C4A—C1A—H1A108.1C4B—C1B—H1B107.5
C5A—C1A—H1A108.1C5B—C1B—H1B107.5
C2A—C1A—H1A108.1C2B—C1B—H1B107.5
C3A—C2A—C8A112.0 (3)C3B—C2B—C8B113.2 (3)
C3A—C2A—C1A118.2 (3)C3B—C2B—C1B117.4 (3)
C8A—C2A—C1A102.2 (3)C8B—C2B—C1B101.6 (3)
C3A—C2A—H2A108.0C3B—C2B—H2B108.1
C8A—C2A—H2A108.0C8B—C2B—H2B108.1
C1A—C2A—H2A108.0C1B—C2B—H2B108.1
C2A—C3A—C4Ai114.1 (3)C2B—C3B—C4Bii113.1 (3)
C2A—C3A—H3A1108.7C2B—C3B—H3B1109.0
C4Ai—C3A—H3A1108.7C4Bii—C3B—H3B1109.0
C2A—C3A—H3A2108.7C2B—C3B—H3B2109.0
C4Ai—C3A—H3A2108.7C4Bii—C3B—H3B2109.0
H3A1—C3A—H3A2107.6H3B1—C3B—H3B2107.8
C1A—C4A—C3Ai113.6 (3)C1B—C4B—C3Bii114.4 (3)
C1A—C4A—H4A1108.8C1B—C4B—H4B1108.7
C3Ai—C4A—H4A1108.8C3Bii—C4B—H4B1108.7
C1A—C4A—H4A2108.8C1B—C4B—H4B2108.7
C3Ai—C4A—H4A2108.8C3Bii—C4B—H4B2108.7
H4A1—C4A—H4A2107.7H4B1—C4B—H4B2107.6
C6A—C5A—C9A99.3 (3)C9B—C5B—C6B100.3 (3)
C6A—C5A—C1A107.5 (3)C9B—C5B—C1B101.9 (3)
C9A—C5A—C1A101.4 (3)C6B—C5B—C1B106.8 (3)
C6A—C5A—Cl1A116.0 (3)C9B—C5B—Cl1B116.3 (3)
C9A—C5A—Cl1A116.2 (2)C6B—C5B—Cl1B115.8 (3)
C1A—C5A—Cl1A114.4 (3)C1B—C5B—Cl1B114.0 (3)
C7A—C6A—C5A107.6 (3)C7B—C6B—C5B106.7 (4)
C7A—C6A—Cl2A127.4 (3)C7B—C6B—Cl2B128.5 (3)
C5A—C6A—Cl2A124.5 (3)C5B—C6B—Cl2B124.3 (3)
C6A—C7A—C8A107.1 (3)C6B—C7B—C8B107.5 (3)
C6A—C7A—Cl3A127.7 (3)C6B—C7B—Cl3B127.8 (4)
C8A—C7A—Cl3A124.8 (3)C8B—C7B—Cl3B124.4 (3)
C7A—C8A—C9A100.6 (3)C7B—C8B—C9B100.3 (3)
C7A—C8A—C2A107.6 (3)C7B—C8B—C2B107.5 (3)
C9A—C8A—C2A101.5 (3)C9B—C8B—C2B101.2 (3)
C7A—C8A—Cl4A116.0 (3)C7B—C8B—Cl4B116.0 (3)
C9A—C8A—Cl4A116.2 (3)C9B—C8B—Cl4B116.2 (3)
C2A—C8A—Cl4A113.3 (3)C2B—C8B—Cl4B113.8 (3)
C8A—C9A—C5A92.6 (3)C5B—C9B—C8B92.9 (3)
C8A—C9A—Cl6A114.9 (3)C5B—C9B—Cl6B114.1 (3)
C5A—C9A—Cl6A119.6 (3)C8B—C9B—Cl6B116.7 (3)
C8A—C9A—Cl5A115.0 (3)C5B—C9B—Cl5B114.6 (3)
C5A—C9A—Cl5A114.2 (3)C8B—C9B—Cl5B114.5 (3)
Cl6A—C9A—Cl5A101.4 (2)Cl6B—C9B—Cl5B104.5 (2)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1B—H1B···Cl4Aiii1.002.703.656 (4)160

Symmetry codes: (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2101).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Riddell, N., McCrindle, R., Arsenault, G. & Lough, A. J. (2008). Acta Cryst. E64, o1249. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography