PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m904.
Published online 2008 June 13. doi:  10.1107/S1600536808016784
PMCID: PMC2961805

Hexakis(dimethyl sulfoxide-κO)chromium(III) trichloride

Abstract

In the title compound, [Cr(C2H6OS)6]Cl3, each CrIII ion is located on a three-fold inversion axis and is coordinated by six dimethyl­sulfoxide ligands [Cr—O = 1.970 (2)–1.972 (2) Å; O—Cr—O = 88.19 (9) and 91.81 (9)°] in a slightly distorted octa­hedral geometry. The Cl anions take part in the formation of weak C—H(...)Cl hydrogen bonds, which contribute to the crystal packing stabilization.

Related literature

For related literature, see: Chan et al. (2004 [triangle]); Desiraju & Steiner (1999 [triangle]); Öhrström & Svensson (2000 [triangle]); Persson et al. (1995 [triangle], and references therein); Reynolds (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m904-scheme1.jpg

Experimental

Crystal data

  • Cr(C2H6OS)6]Cl3
  • M r = 627.12
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0m904-efi9.jpg
  • a = 10.5499 (6) Å
  • c = 21.1370 (13) Å
  • V = 2037.4 (2) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 120 (2) K
  • 0.34 × 0.29 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (North et al., 1968 [triangle]) T min = 0.688, T max = 0.795
  • 10865 measured reflections
  • 1044 independent reflections
  • 855 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.135
  • S = 1.14
  • 1044 reflections
  • 46 parameters
  • H-atom parameters constrained
  • Δρmax = 0.82 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016784/cv2410sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016784/cv2410Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Dimethylsulfoxide (dmso) has often been used as solvent and a ligand in inorganic chemistry since the beginning of the 1960th. Dimethylsulfoxide is a monodentate O–,S-donor ligand (Reynolds, 1970). Solvates of some transition metal ions have been prepared and structurally charaterized (Persson et al., 1995 and references therein).

The title compound, (I), is composed of [Cr(C2H6OS)6]3+ cations and chloride anions. The Cr(III) ion is located on a 3-fold inversion axis being coordinated by the six dimethylsulfoxide ligands in a slightly distorted octahedral geometry (Fig. 1), with Cr—O 1.970 (2)–1.972 (2) Å interatomic distances and O—Cr—O 88.19 (9), 91.81 (9)° bond angles. A search in the Cambridge Structural Database revealed 14 reports of compounds containing transition metal hexakis(dimethylsulfoxide) cations, of which two described the structure of the [Cr(C2H6OS)6]3+ cation in [Cr(C2H6OS)6](ClO4)3 (Chan et al., 2004) and [Cr(C2H6OS)6](NO3)3 (Ohrstrom & Svensson, 2000). The S═O bond lengths in the aforementioned compounds are almost identical, 1.542 (3) Å versus 1.543 (2) Å for the title compound, as well as the O—Cr—O angles, 87.9/92.2° versus 88.19–91.81°. In the present structure the average value of Cr—O—S angles (121.9°) is somewhat smaller than that in [Cr(C2H6OS)6](NO3)3 (123.6°). All other angles and bonds of the title compound are very similar to the above mentioned structures.

In (I), the Cl anions take part in formation of weak C—H···Cl hydrogen bonds (Table 1), which contribute to the crystal packing stabilization.

Experimental

Complex (I) was synthesized during the attempt to prepare chromium (III) complex with 1H-pyrazole-3,5-dicarbohydrazide (Fig. 2) by adding CrCl3.6H2O (0.3 mmol, 3 ml of 0.1M aqueous solution) to the 1H-pyrazole-3,5-dicarbohydrazide (0.0552 g, 0.3 mmol) in dimethylsulfoxide solution (6 ml). The mixture was stirred for 30 min at ambient temperature. The resulting green solution was filtered and the filtrate was left to stand at room temperature. Slow evaporation of the solvent during 2 weeks yielded green crystals of (I).

Refinement

The H atoms were positioned geometrically (C—H 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 60% probability level [symmetry codes: (i) -x + y, 1 - x, z; (ii) 2/3 + x-y, 1/3 + x, 1/3 - z; (iii) 1 - y, 1 + x-y, z; (iv) -1/3 + y, 1/3 - x + y, 1/3 ...
Fig. 2.
1H-pyrazole-3,5-dicarbohydrazide

Crystal data

[Cr(C2H6OS)6]Cl3Z = 3
Mr = 627.12F000 = 981
Trigonal, R3Dx = 1.533 Mg m3
Hall symbol: -R 3Mo Kα radiation λ = 0.71073 Å
a = 10.5499 (6) ÅCell parameters from 6073 reflections
b = 10.5499 (6) Åθ = 1.0–27.5º
c = 21.1370 (13) ŵ = 1.20 mm1
α = 90ºT = 120 (2) K
β = 90ºBlock, green
γ = 120º0.34 × 0.29 × 0.20 mm
V = 2037.4 (2) Å3

Data collection

Nonius KappaCCD diffractometer1044 independent reflections
Radiation source: fine-focus sealed tube855 reflections with I > 2σ(I)
Monochromator: horizontally mounted graphite crystalRint = 0.051
Detector resolution: 9 pixels mm-1θmax = 27.6º
T = 120(2) Kθmin = 2.4º
[var phi] scans and ω scans with κ offseth = −13→13
Absorption correction: multi-scan(North et al., 1968)k = −13→13
Tmin = 0.688, Tmax = 0.795l = −26→27
10865 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.0789P)2 + 3.3338P] where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1044 reflectionsΔρmax = 0.82 e Å3
46 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cr10.33330.66670.16670.0214 (3)
Cl10.00000.00000.00000.0324 (5)
Cl20.00000.00000.25064 (7)0.0416 (4)
S10.24193 (8)0.38772 (8)0.08860 (4)0.0261 (3)
O10.3687 (2)0.5325 (2)0.11455 (10)0.0270 (5)
C10.3083 (4)0.3721 (4)0.01371 (16)0.0336 (7)
H1A0.31410.4485−0.01450.050*
H1B0.24160.2757−0.00440.050*
H1C0.40580.38340.01860.050*
C20.2577 (4)0.2497 (4)0.12936 (18)0.0384 (8)
H2A0.35760.26700.12480.058*
H2B0.18830.15380.11160.058*
H2C0.23600.25180.17430.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cr10.0165 (4)0.0165 (4)0.0311 (6)0.00824 (19)0.0000.000
Cl10.0245 (6)0.0245 (6)0.0480 (11)0.0123 (3)0.0000.000
Cl20.0421 (6)0.0421 (6)0.0405 (9)0.0211 (3)0.0000.000
S10.0221 (4)0.0207 (4)0.0346 (5)0.0099 (3)−0.0004 (3)−0.0004 (3)
O10.0202 (10)0.0222 (10)0.0374 (12)0.0096 (9)−0.0015 (8)−0.0045 (8)
C10.0339 (17)0.0279 (16)0.0331 (17)0.0111 (13)0.0028 (13)−0.0017 (13)
C20.045 (2)0.0278 (16)0.044 (2)0.0196 (15)−0.0007 (16)0.0063 (14)

Geometric parameters (Å, °)

Cr1—O1i1.972 (2)S1—C11.772 (3)
Cr1—O1ii1.971 (2)C1—H1A0.9800
Cr1—O1iii1.971 (2)C1—H1B0.9800
Cr1—O11.970 (2)C1—H1C0.9800
Cr1—O1iv1.971 (2)C2—H2A0.9800
Cr1—O1v1.971 (2)C2—H2B0.9800
S1—O11.542 (2)C2—H2C0.9800
S1—C21.770 (3)
O1i—Cr1—O1ii180.0O1—S1—C1102.86 (14)
O1i—Cr1—O1iii91.81 (9)C2—S1—C198.87 (17)
O1ii—Cr1—O1iii88.19 (9)S1—O1—Cr1121.86 (12)
O1i—Cr1—O191.81 (9)S1—C1—H1A109.5
O1ii—Cr1—O188.19 (9)S1—C1—H1B109.5
O1iii—Cr1—O191.81 (9)H1A—C1—H1B109.5
O1i—Cr1—O1iv88.19 (9)S1—C1—H1C109.5
O1ii—Cr1—O1iv91.81 (9)H1A—C1—H1C109.5
O1iii—Cr1—O1iv180.0H1B—C1—H1C109.5
O1—Cr1—O1iv88.19 (9)S1—C2—H2A109.5
O1i—Cr1—O1v88.19 (9)S1—C2—H2B109.5
O1ii—Cr1—O1v91.81 (9)H2A—C2—H2B109.5
O1iii—Cr1—O1v88.19 (9)S1—C2—H2C109.5
O1—Cr1—O1v179.999 (1)H2A—C2—H2C109.5
O1iv—Cr1—O1v91.81 (9)H2B—C2—H2C109.5
O1—S1—C2104.46 (15)
C2—S1—O1—Cr1−112.64 (17)O1ii—Cr1—O1—S1140.87 (18)
C1—S1—O1—Cr1144.52 (16)O1iii—Cr1—O1—S1−131.00 (10)
O1i—Cr1—O1—S1−39.13 (18)O1iv—Cr1—O1—S149.00 (10)

Symmetry codes: (i) −x+y, −x+1, z; (ii) xy+2/3, x+1/3, −z+1/3; (iii) −y+1, xy+1, z; (iv) y−1/3, −x+y+1/3, −z+1/3; (v) −x+2/3, −y+4/3, −z+1/3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1B···Cl10.982.753.647 (3)153
C1—H1A···Cl2vi0.982.643.614 (4)176

Symmetry codes: (vi) x+1/3, y+2/3, z−1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2410).

References

  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Chan, E. J., Cox, G., Harrowfield, M., Ogden, I., Skelton, B. W. & White, A. H. (2004). Inorg. Chim. Acta, 357, 2365–2372.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 40–107. Oxford University Press.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Öhrström, L. & Svensson, G. (2000). Inorg. Chim. Acta, 305, 157–163.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Persson, I., Sandström, M., Yokoyama, H. & Chaudhry, M. (1995). Z. Naturforsch. Teil A, 50, 21–30.
  • Reynolds, W. L. (1970). Prog. Inorg. Chem.12, 1–29.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography