PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1353.
Published online 2008 June 28. doi:  10.1107/S1600536808018667
PMCID: PMC2961804

9-[4,5-Bis(benzyl­sulfan­yl)-1,3-dithiol-2-yl­idene]-4,5-diaza­fluorene

Abstract

In rhe title compound, C28H20N2S4, the 1,3-dithiol-2-yl­idene and 4,5-diaza­fluoren-9-one (dafone) groups are almost coplanar, making a dihedral angle of only 5.65 (4)°. The two benzyl groups are on different sides of the 1,3-dithiol-2-yl­idene ring, forming a dihedral angle of 35.54 (2)°.

Related literature

For general synthesis, see: Sako et al. (1996 [triangle]); Wong et al. (2005 [triangle]); Amriou et al. (2006 [triangle]); Baudron & Hosseini (2006 [triangle]). For the crystal structures of related compounds, see: Rillema et al. (2007 [triangle]); Zhang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1353-scheme1.jpg

Experimental

Crystal data

  • C28H20N2S4
  • M r = 512.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1353-efi5.jpg
  • a = 16.5133 (4) Å
  • b = 11.4036 (3) Å
  • c = 13.1406 (3) Å
  • β = 100.460 (1)°
  • V = 2435.06 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 296 (2) K
  • 0.30 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.93, T max = 0.95
  • 22070 measured reflections
  • 4701 independent reflections
  • 3365 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.137
  • S = 1.00
  • 4701 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018667/rt2019sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018667/rt2019Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Major State Basic Research Development Programme and the National Natural Science Foundation of China (grant Nos. 20571029 and 20671038).

supplementary crystallographic information

Comment

The two coordinating nitrogen atoms in dafone have a larger bite distance (2.99 Å) compared to phenanthroline (2.65 Å). The larger N—N bite distance enforced by the rigid five-membered central ring leads to unequal binding by the two nitrogen atoms with small metal ions (Zhang et al., 2003;). The title compound was synthesized illustrating the coordination mode of dafone.

The molecular structure of the title compound was determined by X-ray analysis (Fig. 1). The 1,3-dithiol-2-ylidene and dafone groups in the structure exhibits a near planar geometry with a dihedral angle 5.65°, and can be explained by the steric repulsion between the S of the dithiole and the peri H of dafone. In the experimentally determined structure, the distances between S1—H19 and S2—H13 are 2.578 and 2.597 Å respectively, although this is still less than the sum of the van der Waals radii (2.91 Å). The two benzyl group are located on different sides of the 1,3-dithiol-2-ylidene plane exhibiting a dihedral angle of 35.5° between them. The exocyclic C11=C12 bond is sightly longer [1.364 Å] than the standard olefinic (R2C=CR2) bond length of 1.33 Å and is typical for 1,3-dithiol-2-ylidene groups [average 1.36 Å].

Fig.2 shows the packing in the unit cell and two types of π-π interactions of the benzyl groups: offset face-to-face and edge-to-face. The distance Cg···Cg between the centroids of the two adjacent benzyl groups is 6.445 Å for offset face-to-face, 4.882 and 5.118 Å for edge-to-face.

Experimental

Dafone was synthesized by the oxidation of 1,10-phenanthroline with alkaline potassium permanganate in 40.6% yields according to the procedure reported in literature (Wong et al., 2005;). The cross coupling reaction of dafone with the corresponding 4,5-bis(benzylthio)-1,3-dithione- 2-thione in the presence of triethyl phosphite under a nitrogen atmosphere afforded the title compound along with the mixture of the selfcoupling product of 4,5-bis(benzylthio)-1,3-dithione-2-thione.

Crystals suitable for single-crystal X-ray diffraction were grown by recrystallisation from ethanol. 1H-NMR(CDCl3, 400 MHz) δ/nm: 8.689–8.700(d, 2H); 7.936–7.955(d, 2H), 7.310–7.407(m, 8H).

Refinement

All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. All the H atoms were positioned geometrically, and was allowed to ride on their corresponding parent atoms with Uiso = 1.2 Ueq.

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms attached to carbon atoms are omitted for clarity. Symmetry codes: (i) x, y, z; (ii) -x, y + 1/2, -z + 1/2; (iii) -x, -y, ...
Fig. 2.
Packing diagram of the title compound. H atoms are omitted for clarity.

Crystal data

C28H20N2S4F000 = 1064
Mr = 512.70Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3616 reflections
a = 16.5133 (4) Åθ = 1.3–28.1º
b = 11.4036 (3) ŵ = 0.41 mm1
c = 13.1406 (3) ÅT = 296 (2) K
β = 100.2460 (10)ºPrism, yellow
V = 2435.06 (10) Å30.30 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer4701 independent reflections
Radiation source: fine-focus sealed tube3365 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
Detector resolution: 8.192 pixels mm-1θmax = 26.0º
T = 296(2) Kθmin = 1.3º
Thin–slice ω scansh = −20→16
Absorption correction: multi-scan(SADABS; Bruker, 2000)k = −11→14
Tmin = 0.93, Tmax = 0.95l = −16→14
22070 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.137  w = 1/[σ2(Fo2) + (0.088P)2 + 0.1086P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4701 reflectionsΔρmax = 0.27 e Å3
307 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.26661 (13)0.3957 (2)0.12381 (18)0.0443 (6)
C20.11648 (12)0.37608 (19)0.01975 (16)0.0388 (5)
C30.22308 (13)0.3509 (2)0.19150 (18)0.0437 (6)
C40.40701 (15)0.3175 (3)0.0638 (2)0.0651 (8)
H4A0.37990.24310.07020.078*
H4B0.39300.3432−0.00750.078*
C50.49893 (14)0.3027 (2)0.0933 (2)0.0513 (6)
C60.55077 (16)0.3460 (2)0.0315 (2)0.0580 (7)
H60.52920.3858−0.02900.070*
C70.63543 (16)0.3306 (2)0.0590 (2)0.0651 (8)
H70.67020.35990.01670.078*
C80.66740 (16)0.2728 (3)0.1474 (2)0.0660 (8)
H80.72400.26280.16570.079*
C90.61659 (17)0.2296 (2)0.2091 (2)0.0652 (8)
H90.63870.18970.26940.078*
C100.53260 (16)0.2442 (2)0.1833 (2)0.0595 (7)
H100.49850.21480.22630.071*
C110.04782 (12)0.37793 (19)−0.05529 (17)0.0389 (5)
C120.03983 (14)0.42998 (19)−0.15886 (17)0.0415 (5)
C130.09229 (15)0.4942 (2)−0.20960 (19)0.0532 (6)
H130.14630.5095−0.17820.064*
C140.06161 (17)0.5345 (2)−0.3080 (2)0.0619 (7)
H140.09520.5770−0.34440.074*
C15−0.01918 (17)0.5114 (2)−0.35224 (19)0.0592 (7)
H15−0.03830.5402−0.41840.071*
C16−0.04129 (13)0.41232 (19)−0.21187 (17)0.0420 (5)
C17−0.08682 (13)0.34911 (19)−0.14401 (17)0.0426 (6)
C18−0.03350 (12)0.32953 (19)−0.04860 (17)0.0389 (5)
C19−0.06498 (13)0.2702 (2)0.02749 (18)0.0454 (6)
H19−0.03270.25520.09170.054*
C20−0.14634 (14)0.2337 (2)0.0048 (2)0.0522 (6)
H20−0.16960.19380.05430.063*
C21−0.19258 (14)0.2566 (2)−0.0910 (2)0.0554 (7)
H21−0.24670.2299−0.10410.067*
C220.27286 (17)0.4698 (2)0.37016 (19)0.0585 (7)
H22A0.31220.51040.33610.070*
H22B0.22070.51090.35410.070*
C230.30247 (15)0.4705 (2)0.48452 (19)0.0487 (6)
C240.38114 (16)0.5099 (2)0.5233 (2)0.0605 (7)
H240.41520.53290.47770.073*
C250.4097 (2)0.5156 (3)0.6274 (3)0.0802 (9)
H250.46260.54310.65180.096*
C260.3614 (3)0.4814 (3)0.6953 (3)0.0880 (11)
H260.38130.48450.76610.106*
C270.2830 (3)0.4420 (3)0.6591 (3)0.0821 (10)
H270.24970.41930.70570.099*
C280.25280 (17)0.4359 (2)0.5533 (2)0.0623 (7)
H280.19970.40870.52920.075*
N1−0.16515 (11)0.31450 (18)−0.16673 (16)0.0504 (5)
N2−0.07133 (12)0.45076 (19)−0.30653 (15)0.0525 (5)
S10.11858 (3)0.32501 (5)0.14525 (4)0.0451 (2)
S20.21191 (3)0.42865 (6)0.00076 (5)0.0470 (2)
S30.25999 (4)0.31922 (6)0.32190 (5)0.0541 (2)
S40.37216 (4)0.42555 (6)0.14861 (5)0.0535 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0350 (12)0.0470 (14)0.0480 (14)−0.0001 (10)−0.0005 (11)−0.0063 (11)
C20.0353 (11)0.0382 (13)0.0419 (13)−0.0015 (10)0.0045 (10)−0.0024 (10)
C30.0407 (12)0.0413 (13)0.0454 (14)0.0020 (10)−0.0022 (11)−0.0010 (10)
C40.0392 (13)0.084 (2)0.0697 (18)−0.0049 (13)0.0033 (12)−0.0222 (15)
C50.0391 (12)0.0519 (15)0.0618 (17)−0.0012 (11)0.0058 (12)−0.0124 (13)
C60.0521 (15)0.0583 (17)0.0635 (18)0.0064 (12)0.0102 (13)−0.0009 (13)
C70.0462 (15)0.0671 (19)0.085 (2)−0.0009 (13)0.0201 (15)−0.0047 (16)
C80.0417 (14)0.0595 (18)0.093 (2)0.0095 (13)0.0005 (15)−0.0164 (16)
C90.0637 (18)0.0517 (17)0.0730 (19)0.0056 (14)−0.0077 (16)−0.0025 (14)
C100.0593 (17)0.0562 (17)0.0620 (18)−0.0127 (13)0.0080 (14)−0.0018 (13)
C110.0344 (11)0.0399 (13)0.0415 (13)0.0008 (10)0.0045 (10)−0.0010 (10)
C120.0409 (12)0.0427 (13)0.0399 (13)0.0018 (10)0.0043 (10)−0.0025 (10)
C130.0505 (14)0.0589 (17)0.0499 (15)−0.0058 (12)0.0081 (12)0.0065 (12)
C140.0694 (18)0.0680 (18)0.0508 (16)−0.0089 (14)0.0175 (14)0.0094 (14)
C150.0690 (17)0.0673 (18)0.0394 (15)0.0036 (14)0.0048 (13)0.0064 (13)
C160.0389 (12)0.0458 (14)0.0393 (13)0.0022 (10)0.0019 (10)−0.0053 (11)
C170.0379 (12)0.0436 (14)0.0437 (14)0.0043 (10)0.0007 (10)−0.0051 (11)
C180.0330 (11)0.0402 (13)0.0427 (13)0.0019 (9)0.0043 (10)−0.0050 (10)
C190.0391 (13)0.0488 (14)0.0479 (14)−0.0030 (10)0.0070 (11)−0.0007 (11)
C200.0398 (13)0.0568 (16)0.0609 (17)−0.0034 (11)0.0114 (12)0.0008 (13)
C210.0341 (13)0.0568 (16)0.0738 (19)−0.0031 (11)0.0055 (13)−0.0037 (14)
C220.0678 (17)0.0483 (15)0.0526 (16)0.0021 (13)−0.0080 (13)−0.0018 (12)
C230.0520 (14)0.0426 (14)0.0479 (15)0.0089 (11)−0.0010 (12)−0.0001 (11)
C240.0580 (16)0.0592 (17)0.0609 (18)−0.0002 (13)0.0014 (14)0.0011 (13)
C250.085 (2)0.069 (2)0.072 (2)0.0017 (17)−0.0248 (18)−0.0088 (17)
C260.135 (3)0.068 (2)0.051 (2)0.028 (2)−0.011 (2)−0.0131 (16)
C270.129 (3)0.064 (2)0.061 (2)0.030 (2)0.041 (2)0.0126 (16)
C280.0613 (17)0.0548 (17)0.072 (2)0.0086 (13)0.0143 (15)0.0028 (14)
N10.0345 (10)0.0572 (13)0.0560 (13)−0.0001 (9)−0.0013 (9)−0.0045 (10)
N20.0558 (13)0.0602 (14)0.0388 (12)0.0043 (10)0.0011 (10)−0.0009 (10)
S10.0392 (3)0.0531 (4)0.0412 (4)−0.0035 (3)0.0020 (3)0.0036 (3)
S20.0357 (3)0.0598 (4)0.0443 (4)−0.0074 (3)0.0040 (3)0.0001 (3)
S30.0621 (4)0.0465 (4)0.0470 (4)−0.0019 (3)−0.0083 (3)0.0044 (3)
S40.0353 (3)0.0593 (4)0.0626 (5)−0.0048 (3)−0.0006 (3)−0.0127 (3)

Geometric parameters (Å, °)

C1—C31.340 (3)C14—H140.9300
C1—S21.747 (2)C15—N21.328 (3)
C1—S41.749 (2)C15—H150.9300
C2—C111.364 (3)C16—N21.329 (3)
C2—S11.744 (2)C16—C171.455 (3)
C2—S21.745 (2)C17—N11.334 (3)
C3—S11.750 (2)C17—C181.416 (3)
C3—S31.751 (2)C18—C191.383 (3)
C4—C51.508 (3)C19—C201.387 (3)
C4—S41.822 (3)C19—H190.9300
C4—H4A0.9700C20—C211.377 (3)
C4—H4B0.9700C20—H200.9300
C5—C61.372 (3)C21—N11.338 (3)
C5—C101.385 (3)C21—H210.9300
C6—C71.391 (3)C22—C231.495 (3)
C6—H60.9300C22—S31.829 (2)
C7—C81.358 (4)C22—H22A0.9700
C7—H70.9300C22—H22B0.9700
C8—C91.359 (4)C23—C281.382 (3)
C8—H80.9300C23—C241.383 (3)
C9—C101.378 (4)C24—C251.367 (4)
C9—H90.9300C24—H240.9300
C10—H100.9300C25—C261.356 (5)
C11—C181.469 (3)C25—H250.9300
C11—C121.469 (3)C26—C271.374 (5)
C12—C131.392 (3)C26—H260.9300
C12—C161.410 (3)C27—C281.392 (4)
C13—C141.381 (3)C27—H270.9300
C13—H130.9300C28—H280.9300
C14—C151.382 (4)
C3—C1—S2116.50 (17)N2—C16—C12125.4 (2)
C3—C1—S4125.80 (19)N2—C16—C17126.1 (2)
S2—C1—S4117.69 (14)C12—C16—C17108.48 (19)
C11—C2—S1124.27 (16)N1—C17—C18125.2 (2)
C11—C2—S2123.16 (17)N1—C17—C16126.5 (2)
S1—C2—S2112.55 (12)C18—C17—C16108.24 (19)
C1—C3—S1116.50 (18)C19—C18—C17117.57 (19)
C1—C3—S3126.42 (18)C19—C18—C11133.8 (2)
S1—C3—S3117.07 (14)C17—C18—C11108.60 (19)
C5—C4—S4109.37 (17)C18—C19—C20117.8 (2)
C5—C4—H4A109.8C18—C19—H19121.1
S4—C4—H4A109.8C20—C19—H19121.1
C5—C4—H4B109.8C21—C20—C19119.9 (2)
S4—C4—H4B109.8C21—C20—H20120.1
H4A—C4—H4B108.2C19—C20—H20120.1
C6—C5—C10118.7 (2)N1—C21—C20124.6 (2)
C6—C5—C4120.9 (2)N1—C21—H21117.7
C10—C5—C4120.4 (2)C20—C21—H21117.7
C5—C6—C7120.3 (3)C23—C22—S3110.54 (17)
C5—C6—H6119.9C23—C22—H22A109.5
C7—C6—H6119.9S3—C22—H22A109.5
C8—C7—C6120.2 (3)C23—C22—H22B109.5
C8—C7—H7119.9S3—C22—H22B109.5
C6—C7—H7119.9H22A—C22—H22B108.1
C7—C8—C9119.9 (3)C28—C23—C24118.7 (2)
C7—C8—H8120.0C28—C23—C22122.0 (2)
C9—C8—H8120.0C24—C23—C22119.3 (2)
C8—C9—C10120.7 (3)C25—C24—C23121.2 (3)
C8—C9—H9119.7C25—C24—H24119.4
C10—C9—H9119.7C23—C24—H24119.4
C9—C10—C5120.2 (3)C26—C25—C24120.4 (3)
C9—C10—H10119.9C26—C25—H25119.8
C5—C10—H10119.9C24—C25—H25119.8
C2—C11—C18127.0 (2)C25—C26—C27119.6 (3)
C2—C11—C12127.01 (19)C25—C26—H26120.2
C18—C11—C12105.95 (18)C27—C26—H26120.2
C13—C12—C16117.1 (2)C26—C27—C28120.7 (3)
C13—C12—C11134.1 (2)C26—C27—H27119.6
C16—C12—C11108.7 (2)C28—C27—H27119.6
C14—C13—C12117.9 (2)C23—C28—C27119.3 (3)
C14—C13—H13121.1C23—C28—H28120.3
C12—C13—H13121.1C27—C28—H28120.3
C13—C14—C15119.7 (2)C17—N1—C21115.0 (2)
C13—C14—H14120.1C15—N2—C16115.5 (2)
C15—C14—H14120.1C2—S1—C397.15 (10)
N2—C15—C14124.3 (2)C2—S2—C197.19 (11)
N2—C15—H15117.8C3—S3—C2298.28 (11)
C14—C15—H15117.8C1—S4—C499.62 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RT2019).

References

  • Amriou, S., Wang, C. S., Batsanov, A. S., Bryce, M. R., Perepichka, D. F., Orti, E., Viruela, R., Gancedo, J. V. & Rovira, C. (2006). Chem. Eur. J.12, 3389–3400. [PubMed]
  • Baudron, S. A. & Hosseini, M. W. (2006). Inorg. Chem.45, 5260–5262. [PubMed]
  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rillema, D. P., Kirgan, R. & Moore, C. (2007). Acta Cryst. E63, o3740.
  • Sako, K., Kusakabe, M. & Tatemitsu, H. (1996). Mol. Cryst. Liq. Cryst.285, 4804–4809.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wong, K. T., Chen, R. T., Fang, F. C., Wu, C. C. & Lin, Y. T. (2005). Org. Lett.7, 1979–1982. [PubMed]
  • Zhang, R. L., Zhao, J. S., Shi, Q. Z. & Ng, S. W. (2003). Acta Cryst. E59, m476–m477.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography