PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1311.
Published online 2008 June 21. doi:  10.1107/S160053680801828X
PMCID: PMC2961803

2-Amino-N-(2-methoxy­phen­yl)-4,5-dimethyl­thio­phene-3-carboxamide

Abstract

In the title compound, C14H16N2O2S, the two aromatic rings make a dihedral angle of 13.9 (1)°. The crystal structure is stabilized by both inter- and intra­molecular N—H(...)O, C—H(...)O and C—H(...)N hydrogen bonds.

Related literature

For related literature, see: Gewald et al. (1966 [triangle]); Cohen et al. (1977 [triangle]); Csaszar & Morvay (1983 [triangle]); Lakshmi et al. (1985 [triangle]); Mohan & Saravanan (2003 [triangle]); Bruns et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1311-scheme1.jpg

Experimental

Crystal data

  • C14H16N2O2S
  • M r = 276.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1311-efi1.jpg
  • a = 8.606 (2) Å
  • b = 7.5193 (19) Å
  • c = 21.297 (5) Å
  • β = 100.599 (5)°
  • V = 1354.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 291 (2) K
  • 0.45 × 0.35 × 0.28 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.908, T max = 0.937
  • 9834 measured reflections
  • 2514 independent reflections
  • 1503 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.142
  • S = 0.99
  • 2514 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801828X/bt2721sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801828X/bt2721Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science, and the Department of Science and Technology, India, for the data collection using the CCD facility, and Bangalore University. CK thanks the Management, Administrator and Principal of HKBK College of Engineering for encouragement and support.

supplementary crystallographic information

Comment

Thiophene derivates containing amino and carboxyl functions have been found to exhibit anti-viral, antiinflamatory and antimicrobial activities (Mohan & Saravanan, 2003). Specifically the 2-amino-carboxylic acid esters were recognized as allosteric enhancers for A1 adenosine receptors (Bruns et al., 1990).

Interaction of 3-(2-thienyl alanine) with human phenyl alanine has been studied with a view to understand the mechanism of catalysis and substrate activation. Diffraction studies on bis 5-bromo-2-substituted thiophene derivatives have revealed the existence of S—S stacking interactions. Our earlier investigations on the structures of the biologically active thiophene carboxamide, has shown that the chloro substitution in the aryl amide group had a significant effect. The ortho-chloro group reversed the orientation of the amide linkage and favoured the formation of more intra molecular hydrogen bonds. The para-chloro substitution induces stabilizing effects via inter molecular hydrogen bonds. The compound in the present study bears a close structural relationship with the reported allosteric enhancers for adenosine and hence the structure has been investigated.

The molecular structure and the packing diagram are shown in Fig. 1 and 2, respectively. The molecular structure is stabilized by intra molecular C—H···O, N—H···O hydrogen bonds and intermolecular N—H···O interactions. (Table 2) The intra molecular C8 - H8···O1 and N1 - H1···O1 hydrogen bonds form pseudo- six membered rings and N2 - H2···O2 forms a pseudo five membered ring thus locking the molecular conformation and eliminating conformational flexibility.

Experimental

The title compound was synthesized by mixing of ethyl methyl ketone (0.72 g, 0.01 mol) and o-methoxycyanoacetanilide (1.94 g, 0.01 mol) and refluxing the mixture for 1 h (Gewald et al., 1966) in the presence of 4.0 ml of diethylamine. Sulfur powder (1.28 g, 0.04 mol) and 40 ml ethanol were then added and the resulting solution was heated for 2 h at 323 K. Crystals were grown by slow evaporation in a solution of isopropyl alcohol (yield 50%).

Refinement

H atoms were positioned geometrically [N—H = 0.86 Å, and C— H = 0.93 (CH), 0.97 (CH2) and 0.96 Å (CH3)] and constrained to ride on their parent atoms with Uiso(H) values of 1.2 (1.5 for methyl) times Ueq(C, N). A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.Dashed lines indicate intramolecular hydrogen bonds; H atoms not involved in hydrogen bonding have been omitted.
Fig. 2.
The packing of (I), viewed down the a axis shows molecules connected by N—H···O hydrogen bonds (dashedlines). H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C14H16N2O2SF000 = 584
Mr = 276.35Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 670 reflections
a = 8.606 (2) Åθ = 2.0–28.5º
b = 7.5193 (19) ŵ = 0.24 mm1
c = 21.297 (5) ÅT = 291 (2) K
β = 100.599 (5)ºBlock, yellow
V = 1354.7 (6) Å30.45 × 0.35 × 0.28 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2514 independent reflections
Radiation source: fine-focus sealed tube1503 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.051
T = 291(2) Kθmax = 25.5º
ψ and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.908, Tmax = 0.937k = −9→9
9834 measured reflectionsl = −25→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.142  w = 1/[σ2(Fo2) + (0.0749P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2514 reflectionsΔρmax = 0.25 e Å3
175 parametersΔρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2740 (3)0.5092 (4)0.74695 (12)0.0593 (8)
H1A0.20560.55820.76620.071*
H1B0.24360.45700.71090.071*
N20.4683 (3)0.6863 (3)0.93475 (11)0.0480 (7)
H20.56460.65120.94550.058*
O10.2675 (3)0.7169 (3)0.85124 (9)0.0630 (7)
O20.6570 (3)0.7367 (3)1.04138 (10)0.0676 (7)
S10.56490 (10)0.41424 (12)0.73395 (4)0.0535 (3)
C20.4302 (3)0.5144 (4)0.77352 (13)0.0420 (7)
C30.5040 (3)0.5902 (4)0.83034 (12)0.0377 (7)
C40.6745 (3)0.5669 (4)0.84070 (13)0.0398 (7)
C50.7229 (3)0.4775 (4)0.79298 (15)0.0467 (7)
C60.4057 (3)0.6700 (4)0.87196 (14)0.0420 (7)
C70.3992 (4)0.7521 (4)0.98507 (14)0.0473 (8)
C80.2397 (4)0.7879 (4)0.98133 (16)0.0627 (9)
H80.16940.77260.94300.075*
C90.1854 (5)0.8470 (5)1.0354 (2)0.0760 (11)
H90.07840.87051.03320.091*
C100.2894 (6)0.8706 (5)1.09189 (19)0.0783 (12)
H100.25190.90961.12780.094*
C110.4478 (5)0.8375 (4)1.09617 (16)0.0681 (11)
H110.51740.85491.13460.082*
C120.5028 (4)0.7782 (4)1.04318 (14)0.0528 (8)
C130.7904 (4)0.6333 (4)0.89802 (14)0.0574 (9)
H13A0.78490.55900.93420.086*
H13B0.76420.75340.90740.086*
H13C0.89550.62980.88890.086*
C140.8866 (4)0.4251 (5)0.78467 (17)0.0650 (9)
H14A0.96300.49700.81190.097*
H14B0.89700.44280.74100.097*
H14C0.90430.30210.79580.097*
C150.7716 (5)0.7639 (6)1.09758 (16)0.0876 (13)
H15A0.77540.88791.10860.131*
H15B0.87330.72651.09020.131*
H15C0.74350.69591.13200.131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0488 (17)0.082 (2)0.0435 (15)−0.0024 (14)−0.0015 (13)−0.0087 (14)
N20.0424 (14)0.0643 (17)0.0367 (14)0.0069 (12)0.0056 (12)−0.0021 (12)
O10.0517 (14)0.0900 (18)0.0449 (13)0.0223 (12)0.0019 (11)0.0006 (12)
O20.0649 (16)0.0908 (18)0.0437 (13)−0.0020 (14)0.0012 (12)−0.0051 (12)
S10.0587 (6)0.0575 (5)0.0451 (5)−0.0032 (4)0.0117 (4)−0.0088 (4)
C20.0434 (17)0.0445 (16)0.0374 (16)−0.0041 (14)0.0055 (14)0.0028 (13)
C30.0402 (17)0.0392 (15)0.0327 (15)0.0016 (13)0.0043 (13)0.0021 (13)
C40.0418 (17)0.0356 (15)0.0410 (17)−0.0004 (13)0.0051 (13)0.0033 (13)
C50.0457 (18)0.0442 (17)0.0508 (18)0.0008 (14)0.0106 (15)0.0013 (14)
C60.0418 (18)0.0429 (17)0.0395 (17)0.0021 (14)0.0031 (14)0.0067 (13)
C70.058 (2)0.0443 (18)0.0433 (18)0.0022 (15)0.0187 (16)0.0033 (14)
C80.067 (2)0.070 (2)0.055 (2)0.0124 (18)0.0222 (18)0.0090 (18)
C90.083 (3)0.075 (3)0.081 (3)0.024 (2)0.044 (2)0.020 (2)
C100.126 (4)0.061 (2)0.060 (3)0.019 (2)0.046 (3)0.0082 (19)
C110.109 (3)0.055 (2)0.044 (2)0.002 (2)0.023 (2)0.0019 (16)
C120.075 (2)0.0466 (18)0.0370 (18)−0.0016 (17)0.0123 (17)0.0028 (14)
C130.0458 (19)0.068 (2)0.055 (2)0.0007 (16)0.0024 (16)−0.0063 (17)
C140.056 (2)0.066 (2)0.075 (2)0.0058 (18)0.0185 (19)−0.0091 (19)
C150.088 (3)0.123 (3)0.044 (2)−0.026 (3)−0.010 (2)0.007 (2)

Geometric parameters (Å, °)

N1—C21.360 (3)C7—C81.387 (5)
N1—H1A0.8600C8—C91.392 (5)
N1—H1B0.8600C8—H80.9300
N2—C61.352 (3)C9—C101.373 (5)
N2—C71.407 (4)C9—H90.9300
N2—H20.8600C10—C111.373 (5)
O1—C61.241 (3)C10—H100.9300
O2—C121.370 (4)C11—C121.376 (4)
O2—C151.419 (4)C11—H110.9300
S1—C21.727 (3)C13—H13A0.9600
S1—C51.740 (3)C13—H13B0.9600
C2—C31.382 (4)C13—H13C0.9600
C3—C41.454 (4)C14—H14A0.9600
C3—C61.462 (4)C14—H14B0.9600
C4—C51.347 (4)C14—H14C0.9600
C4—C131.512 (4)C15—H15A0.9600
C5—C141.504 (4)C15—H15B0.9600
C7—C121.399 (4)C15—H15C0.9600
C2—N1—H1A120.0C8—C9—H9119.9
C2—N1—H1B120.0C10—C9—H9119.9
H1A—N1—H1B120.0C11—C10—C9120.9 (4)
C6—N2—C7129.6 (3)C11—C10—H10119.5
C6—N2—H2115.2C9—C10—H10119.5
C7—N2—H2115.2C10—C11—C12119.5 (4)
C12—O2—C15118.0 (3)C10—C11—H11120.3
C2—S1—C591.95 (14)C12—C11—H11120.3
N1—C2—C3129.5 (3)O2—C12—C11125.3 (3)
N1—C2—S1119.1 (2)O2—C12—C7114.0 (3)
C3—C2—S1111.4 (2)C11—C12—C7120.8 (3)
C2—C3—C4111.8 (3)C4—C13—H13A109.5
C2—C3—C6118.4 (2)C4—C13—H13B109.5
C4—C3—C6129.6 (2)H13A—C13—H13B109.5
C5—C4—C3112.9 (3)C4—C13—H13C109.5
C5—C4—C13121.6 (3)H13A—C13—H13C109.5
C3—C4—C13125.4 (3)H13B—C13—H13C109.5
C4—C5—C14130.2 (3)C5—C14—H14A109.5
C4—C5—S1111.9 (2)C5—C14—H14B109.5
C14—C5—S1117.9 (2)H14A—C14—H14B109.5
O1—C6—N2120.5 (3)C5—C14—H14C109.5
O1—C6—C3121.6 (3)H14A—C14—H14C109.5
N2—C6—C3117.9 (2)H14B—C14—H14C109.5
C12—C7—N2115.7 (3)O2—C15—H15A109.5
C12—C7—C8119.1 (3)O2—C15—H15B109.5
N2—C7—C8125.2 (3)H15A—C15—H15B109.5
C9—C8—C7119.6 (4)O2—C15—H15C109.5
C9—C8—H8120.2H15A—C15—H15C109.5
C7—C8—H8120.2H15B—C15—H15C109.5
C8—C9—C10120.2 (4)
C5—S1—C2—N1179.1 (2)C4—C3—C6—O1163.3 (3)
C5—S1—C2—C3−1.1 (2)C2—C3—C6—N2157.1 (3)
N1—C2—C3—C4−179.5 (3)C4—C3—C6—N2−18.8 (4)
S1—C2—C3—C40.8 (3)C6—N2—C7—C12−170.1 (3)
N1—C2—C3—C63.9 (5)C6—N2—C7—C811.3 (5)
S1—C2—C3—C6−175.8 (2)C12—C7—C8—C9−0.7 (5)
C2—C3—C4—C50.1 (3)N2—C7—C8—C9177.8 (3)
C6—C3—C4—C5176.3 (3)C7—C8—C9—C100.4 (5)
C2—C3—C4—C13−179.9 (3)C8—C9—C10—C110.3 (6)
C6—C3—C4—C13−3.8 (5)C9—C10—C11—C12−0.6 (5)
C3—C4—C5—C14−179.9 (3)C15—O2—C12—C11−3.0 (5)
C13—C4—C5—C140.1 (5)C15—O2—C12—C7178.2 (3)
C3—C4—C5—S1−1.0 (3)C10—C11—C12—O2−178.6 (3)
C13—C4—C5—S1179.1 (2)C10—C11—C12—C70.3 (5)
C2—S1—C5—C41.2 (2)N2—C7—C12—O20.7 (4)
C2—S1—C5—C14−179.7 (3)C8—C7—C12—O2179.4 (3)
C7—N2—C6—O10.1 (5)N2—C7—C12—C11−178.3 (3)
C7—N2—C6—C3−177.8 (3)C8—C7—C12—C110.4 (5)
C2—C3—C6—O1−20.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.152.724 (3)124
N1—H1B···O1i0.862.233.009 (4)151
N2—H2···O20.862.152.565 (3)109
C8—H8···O10.932.302.874 (4)119

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2721).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruns, R. F., Fergus, J. H., Coughenour, L. L., Courtland, G. E., Pugsley, T. A., Dodd, J. H. & Tinney, F. J. (1990). Mol. Pharmacol.38, 950–958. [PubMed]
  • Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci.66, 1332–1334. [PubMed]
  • Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung.53, 121–128. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber.99, 94–100.
  • Lakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci.23, 327–336.
  • Mohan, S. & Saravanan, J. (2003). Asian J. Chem.15, 67–70.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography