PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m931–m932.
Published online 2008 June 19. doi:  10.1107/S1600536808017674
PMCID: PMC2961801

Tetra­kis(dihydrogen pefloxacinium) di-μ2-chlorido-bis­[tetra­chloridobismuthate(III)] tetra­chloride octa­hydrate

Abstract

The title compound {systematic name: tetra­kis[4-(3-carb­oxy-1-ethyl-6-fluoro-4-hydroxonio-1,4-dihydro-7-quinol­yl)-1-meth­yl­piperazin-1-ium] di-μ2-chlorido-bis­[tetra­chlorido­bismuth­ate(III)] tetra­chloride octa­hydrate}, (C17H22FN3O3)4[Bi2Cl10]Cl4·8H2O, is composed of edge-shared centrosymmetric dinuclear [Bi2Cl10]4− anions, Cl anions, dihydrogen pefloxacinium cations and water mol­ecules. The BiIII coordination polyhedron is a distorted octa­hedron. There are four short terminal Bi—Cl bonds [2.5037 (10)–2.6911 (7) Å] and two longer bridging bonds [2.8834 (8) and 3.0687 (9) Å] in each octa­hedron. Two sets of chloride ions and water mol­ecules are disordered over the same sites with site occupancies of 1/3 and 2/3, respectively. Anions, cations and water mol­ecules are linked by O—H(...)O, O—H(...)Cl and N—H(...)Cl hydrogen bonds, forming a three-dimensional framework. There are also π–π stacking inter­actions between quinoline ring systems [centroid–centroid distance = 3.575 (1) Å].

Related literature

For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m931-scheme1.jpg

Experimental

Crystal data

  • (C17H22FN3O3)4[Bi2Cl10]Cl4·8H2O
  • M r = 2399.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m931-efi1.jpg
  • a = 14.4201 (14) Å
  • b = 25.305 (3) Å
  • c = 12.6359 (12) Å
  • β = 99.028 (2)°
  • V = 4553.7 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.35 mm−1
  • T = 173 (2) K
  • 0.30 × 0.05 × 0.01 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: Gaussian (XPREP, SADABS; Bruker, 2003 [triangle]) T min = 0.606, T max = 0.958
  • 16488 measured reflections
  • 6329 independent reflections
  • 5310 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.077
  • S = 1.08
  • 6329 reflections
  • 303 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.23 e Å−3
  • Δρmin = −1.17 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT ; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL ; molecular graphics: XP in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected interatomic distances and short contacts to water molecules (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017674/ci2612sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017674/ci2612Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Russian Foundation for Basic Research (project No. 08–03–91750) for financial support.

supplementary crystallographic information

Comment

Pefloxacin (pfH) belongs to the second-generation quinolone antimicrobial agents. According to a search of the Cambridge Structural Database (CSD, Version 5.28; Allen, 2002), well determined structures are those where pefloxacin acts as an anion or as a single protonated cation. The present research deals with the synthesis and structure of a chlorido-bismuth complex with the doubly protonated cation of pefloxacin (pfH3)2+.

The asymmetric unit of the title compound, (I), contains one Bi atom, seven chlorine atoms (two of them are disordered), one pfH3 cation and three H2O molecules (from them a two are disordered). The Bi atoms are coordinated by six Cl atoms in a distorted octahedral geometry. Two Bi-centred octahedra are linked by double Cl bridges to form a centrosymmetric dinuclear [Bi2F10]4- complex (Fig. 1), with a Bi···Bii distance of 4.4596 (5) Å. In the Bi-octahedra there are four short terminal Bi—Cl bonds [2.5037 (10)-2.6911 (7) Å] and two longer bridging bonds [2.8834 (8) and 3.0687 (9) Å]. These Bi-anions pack up in columns parallel to the [0 0 1] direction (Fig. 2).

The protonation of pfH32+ is realised on the carbonyl atom O3 and N2 of the piperazine ring (Fig. 3). The hydrogen atom H3 is linked by an intramolecular hydrogen bond with O1 atom of the carboxyl group. Atoms O2 and N2 in the cation act as hydrogen-bond donors, via H4 and H2

There are three uncoordinated chlorine atoms (Cl5, Cl6 and Cl7) of which Cl6 and Cl7 are disordered and statistically replaced by atoms O6 and O7 of water molecules, respectively [Wyckoff positions 8j and 4i for Cl6/O6 and Cl7/O7, respectively]. Site occupation factors of these chloride ions were assigned equal to 1/3, and water molecule to 2/3 from the crystal chemistry considerations. The refinement of the Cl6/O6 and Cl7/O7 site occupation factors resulted in the same values with accuracy within 0.04. As the hydrogen atoms were not located for disordered water molecules, probable hydrogen bonds involving these atoms are given in Table 3.

In the crystal structure, the cations are packed along the aaxis. There exist π–π stacking interactions between quinoline ring systems (Fig.4), with nearest C···C contacts are in the range 3.292 (5)-3.365 (3) Å. Anions, cations and H2O-molecules are linked by a network of O—H···O, O—H···Cl and N—H···Cl hydrogen bonds into a three-dimensional framework.

Experimental

Bi(OH)3 (1.00 g, 3.85 mmol) was reacted with pfH (1.50 g, 5.77 mmol) in a solution of HCl (35%, 15 ml). Yellow crystals were obtained after evaporation for 72 h at room temperature.

Refinement

H atoms of H2O were located in a difference map and refined with Uiso(H) = 1.5Ueq(O) and the O-H distances were restrained to be similar. The other H atoms were positioned with idealized geometry using a riding model with C-H = 0.95, 0.98 and 0.99 Å; N-H = 0.93 Å and O-H = 0.84 Å. All H atoms were refined with Uiso set to 1.2 or 1.5 times Ueq of the parent atom. Atoms Cl6 and O6, and also Cl7 and O7, are disordered between them with site occupancies of 1/3 and 2/3, respectively. H atoms belonging to the disordered water molecules could not be located. The maximum peak and the deepest hole are located 0.86 Å and 1.13 Å from Bi, respectively.

Figures

Fig. 1.
A view of the dinuclear [Bi2F10]4- complex, with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: x, 1-y, z; (ii) 1-x, 1-y, 2-z.]
Fig. 2.
The crystal structure of the title compound, viewed along the c axis. Dashed lines represent hydrogen bonds.
Fig. 3.
A view of the pfH32+ canion, with displacement ellipsoids drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 4.
The crystal structure of the title compound, viewed along the a axis. Dashed lines represent hydrogen bonds.

Crystal data

(C17H22FN3O3)4[Bi2Cl10]Cl4·8H2OF000 = 2392
Mr = 2399.89Dx = 1.750 Mg m3
Monoclinic, C2/mMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 897 reflections
a = 14.4201 (14) Åθ = 2.8–27.5º
b = 25.305 (3) ŵ = 4.35 mm1
c = 12.6359 (12) ÅT = 173 (2) K
β = 99.028 (2)ºPrism, yellow
V = 4553.7 (8) Å30.30 × 0.05 × 0.01 mm
Z = 2

Data collection

Bruker SMART 1000 CCD area-detector diffractometer6329 independent reflections
Radiation source: fine-focus sealed tube5310 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
Detector resolution: 8.33 pixels mm-1θmax = 29.5º
T = 173(2) Kθmin = 1.6º
ω scansh = −16→19
Absorption correction: Gaussian(SADABS; Bruker, 2003)k = −34→30
Tmin = 0.606, Tmax = 0.958l = −17→8
16488 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077  w = 1/[σ2(Fo2) + (0.0241P)2 + 5.6647P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.010
6329 reflectionsΔρmax = 1.23 e Å3
303 parametersΔρmin = −1.17 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Bi0.478467 (9)0.50001.170934 (10)0.01789 (3)
Cl10.36184 (6)0.50000.96352 (7)0.02166 (18)
Cl20.32976 (7)0.50001.24998 (8)0.0332 (2)
Cl30.46439 (4)0.39397 (2)1.16382 (5)0.02578 (14)
Cl40.58921 (10)0.50001.35173 (9)0.0501 (3)
Cl50.50000.19810 (4)0.00000.0277 (2)
Cl60.9645 (3)0.58510 (18)0.4025 (3)0.0829 (12)0.33333
O60.9296 (2)0.55576 (12)0.3952 (3)0.0376 (8)0.66667
Cl70.0257 (3)0.50000.9040 (4)0.0483 (12)0.33333
O70.0152 (4)0.50000.8794 (5)0.0447 (17)0.66667
F20.69789 (11)0.22163 (6)0.19969 (11)0.0286 (4)
O10.55734 (13)0.17802 (7)0.73845 (15)0.0286 (5)
O20.56440 (14)0.25726 (7)0.81762 (14)0.0302 (5)
H40.55040.23960.86920.045*
O30.60949 (13)0.17118 (7)0.54491 (15)0.0283 (5)
H30.59690.15860.60250.042*
O50.05523 (17)0.41020 (10)0.2439 (2)0.0570 (7)
H5B0.0279 (12)0.3815 (5)0.234 (3)0.085*
H5C0.0302 (18)0.4357 (6)0.210 (2)0.085*
N10.70541 (15)0.33043 (8)0.19082 (16)0.0218 (5)
N20.74434 (15)0.38831 (9)0.00739 (17)0.0235 (5)
H20.68950.4083−0.00530.028*
N30.62148 (14)0.33321 (8)0.55077 (16)0.0198 (5)
C10.60166 (16)0.30659 (10)0.6364 (2)0.0215 (6)
H1A0.59050.32630.69720.026*
C20.59658 (16)0.25233 (10)0.6410 (2)0.0203 (6)
C30.61226 (17)0.22153 (11)0.5512 (2)0.0227 (6)
C40.63379 (16)0.25024 (10)0.45924 (19)0.0187 (5)
C50.65146 (16)0.22261 (10)0.36745 (19)0.0209 (6)
H50.64810.18510.36560.025*
C60.67306 (17)0.24941 (10)0.28238 (19)0.0212 (6)
C70.67653 (16)0.30550 (10)0.27776 (19)0.0206 (6)
C80.65728 (17)0.33298 (10)0.36801 (19)0.0209 (6)
H80.65720.37050.36770.025*
C90.63802 (16)0.30572 (10)0.45928 (19)0.0191 (5)
C100.65575 (17)0.31800 (11)0.08222 (19)0.0220 (6)
H10A0.59700.33880.06750.026*
H10B0.63910.28000.07780.026*
C110.71759 (18)0.33095 (11)0.0000 (2)0.0249 (6)
H11A0.77490.30880.01260.030*
H11B0.68380.3231−0.07260.030*
C120.79311 (18)0.40046 (11)0.1187 (2)0.0253 (6)
H12A0.80840.43860.12450.030*
H12B0.85270.38040.13330.030*
C130.73148 (19)0.38594 (11)0.2011 (2)0.0250 (6)
H13A0.76570.39280.27400.030*
H13B0.67420.40810.19040.030*
C140.57179 (17)0.22525 (10)0.73660 (19)0.0214 (6)
C150.62925 (18)0.39181 (10)0.5556 (2)0.0248 (6)
H15A0.59930.40490.61590.030*
H15B0.59480.40700.48860.030*
C160.72972 (19)0.41048 (11)0.5703 (2)0.0293 (7)
H16A0.76000.40310.64380.044*
H16B0.73120.44860.55690.044*
H16C0.76330.39190.51980.044*
C170.8038 (2)0.40306 (12)−0.0740 (2)0.0336 (7)
H17A0.85940.3802−0.06610.050*
H17B0.82350.4400−0.06350.050*
H17C0.76780.3987−0.14590.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Bi0.02397 (6)0.01417 (5)0.01620 (5)0.0000.00521 (4)0.000
Cl10.0236 (4)0.0201 (4)0.0211 (4)0.0000.0032 (3)0.000
Cl20.0413 (4)0.0254 (4)0.0391 (5)0.0000.0257 (4)0.000
Cl30.0324 (3)0.0162 (3)0.0304 (3)0.0004 (2)0.0101 (3)0.0003 (2)
Cl40.0714 (8)0.0404 (6)0.0299 (5)0.000−0.0188 (5)0.000
Cl50.0309 (4)0.0253 (4)0.0282 (4)0.0000.0085 (4)0.000
Cl60.079 (2)0.088 (3)0.084 (2)−0.014 (2)0.0203 (19)−0.022 (2)
O60.058 (2)0.0163 (14)0.0394 (17)0.0067 (14)0.0099 (15)0.0009 (13)
Cl70.050 (2)0.0267 (17)0.058 (2)0.000−0.0206 (18)0.000
O70.042 (3)0.038 (3)0.050 (3)0.000−0.004 (3)0.000
F20.0418 (8)0.0238 (8)0.0208 (7)0.0034 (7)0.0070 (6)−0.0058 (6)
O10.0358 (10)0.0205 (9)0.0294 (10)0.0011 (8)0.0042 (8)0.0024 (7)
O20.0472 (10)0.0221 (9)0.0239 (9)−0.0025 (8)0.0138 (8)−0.0013 (7)
O30.0393 (10)0.0200 (9)0.0267 (9)−0.0044 (8)0.0087 (8)0.0007 (7)
O50.0548 (14)0.0491 (15)0.0700 (17)−0.0072 (12)0.0190 (13)0.0058 (13)
N10.0286 (10)0.0186 (10)0.0177 (10)−0.0028 (9)0.0020 (8)−0.0021 (8)
N20.0248 (10)0.0225 (11)0.0235 (10)0.0054 (9)0.0047 (8)0.0037 (8)
N30.0231 (9)0.0181 (10)0.0188 (9)0.0037 (8)0.0052 (8)−0.0024 (8)
C10.0185 (10)0.0255 (13)0.0210 (11)−0.0011 (10)0.0048 (9)−0.0041 (10)
C20.0162 (10)0.0235 (12)0.0212 (11)−0.0002 (9)0.0026 (9)−0.0001 (9)
C30.0188 (11)0.0258 (13)0.0226 (12)−0.0009 (10)0.0005 (10)−0.0026 (10)
C40.0143 (10)0.0214 (12)0.0197 (11)0.0022 (9)0.0004 (9)−0.0020 (9)
C50.0188 (11)0.0200 (12)0.0233 (12)−0.0019 (9)0.0016 (9)−0.0038 (9)
C60.0203 (11)0.0239 (12)0.0190 (11)0.0043 (10)0.0021 (9)−0.0060 (9)
C70.0173 (10)0.0238 (12)0.0198 (11)0.0006 (9)0.0007 (9)−0.0009 (9)
C80.0233 (11)0.0156 (11)0.0223 (12)0.0027 (9)−0.0010 (10)−0.0024 (9)
C90.0180 (10)0.0224 (12)0.0159 (11)0.0007 (9)0.0001 (9)−0.0029 (9)
C100.0236 (11)0.0260 (13)0.0157 (11)0.0008 (10)0.0009 (9)−0.0016 (9)
C110.0291 (12)0.0244 (13)0.0221 (12)0.0028 (11)0.0062 (10)−0.0022 (10)
C120.0259 (12)0.0226 (13)0.0264 (13)−0.0001 (10)0.0012 (10)0.0034 (10)
C130.0306 (13)0.0228 (13)0.0204 (12)−0.0016 (11)0.0006 (10)−0.0047 (10)
C140.0184 (11)0.0261 (13)0.0199 (11)0.0009 (10)0.0030 (9)0.0011 (10)
C150.0318 (12)0.0199 (12)0.0238 (12)0.0043 (10)0.0078 (10)−0.0025 (10)
C160.0367 (14)0.0227 (13)0.0297 (13)−0.0025 (11)0.0085 (11)−0.0062 (11)
C170.0360 (14)0.0361 (16)0.0314 (14)0.0074 (12)0.0140 (12)0.0112 (12)

Geometric parameters (Å, °)

Bi—Cl22.5037 (10)C2—C141.480 (4)
Bi—Cl42.5737 (11)C3—C41.445 (4)
Bi—Cl32.6910 (7)C4—C91.405 (3)
Bi—Cl3i2.6911 (7)C4—C51.411 (3)
Bi—Cl12.8834 (8)C5—C61.348 (4)
Bi—Cl1ii3.0687 (9)C5—H50.95
Bi—Biii4.4596 (5)C6—C71.422 (4)
Cl1—Biii3.0687 (9)C7—C81.400 (4)
F2—C61.353 (3)C8—C91.408 (4)
O1—C141.214 (3)C8—H80.95
O2—C141.323 (3)C10—C111.507 (4)
O2—H40.84C10—H10A0.99
O3—C31.277 (3)C10—H10B0.99
O3—H30.84C11—H11A0.99
O5—H5B0.828 (10)C11—H11B0.99
O5—H5C0.826 (11)C12—C131.516 (4)
N1—C71.386 (3)C12—H12A0.99
N1—C131.455 (3)C12—H12B0.99
N1—C101.479 (3)C13—H13A0.99
N2—C171.486 (4)C13—H13B0.99
N2—C111.501 (3)C15—C161.507 (4)
N2—C121.503 (3)C15—H15A0.99
N2—H20.93C15—H15B0.99
N3—C11.343 (3)C16—H16A0.98
N3—C91.401 (3)C16—H16B0.98
N3—C151.488 (3)C16—H16C0.98
C1—C21.377 (4)C17—H17A0.98
C1—H1A0.95C17—H17B0.98
C2—C31.424 (4)C17—H17C0.98
O6···O6i2.822 (6)O6···O3v3.091 (4)
O6···Cl6iii2.863 (5)O7···Cl7vi2.888 (7)
O6···O5iv2.961 (4)O7···O7vi3.146 (14)
O6···O6iii3.074 (6)
Cl2—Bi—Cl495.56 (4)N1—C7—C8122.8 (2)
Cl2—Bi—Cl387.046 (14)N1—C7—C6120.2 (2)
Cl4—Bi—Cl393.594 (14)C8—C7—C6116.7 (2)
Cl2—Bi—Cl3i87.046 (14)C7—C8—C9120.9 (2)
Cl4—Bi—Cl3i93.594 (14)C7—C8—H8119.6
Cl3—Bi—Cl3i171.10 (3)C9—C8—H8119.6
Cl2—Bi—Cl187.06 (3)N3—C9—C4118.9 (2)
Cl4—Bi—Cl1177.38 (4)N3—C9—C8120.9 (2)
Cl3—Bi—Cl186.529 (14)C4—C9—C8120.2 (2)
Cl3i—Bi—Cl186.529 (14)N1—C10—C11109.9 (2)
Cl2—Bi—Cl1ii170.06 (3)N1—C10—H10A109.7
Cl4—Bi—Cl1ii94.38 (4)C11—C10—H10A109.7
Cl3—Bi—Cl1ii92.335 (14)N1—C10—H10B109.7
Cl3i—Bi—Cl1ii92.335 (14)C11—C10—H10B109.7
Cl1—Bi—Cl1ii83.00 (3)H10A—C10—H10B108.2
Cl2—Bi—Biii130.14 (2)N2—C11—C10110.0 (2)
Cl4—Bi—Biii134.31 (3)N2—C11—H11A109.7
Cl3—Bi—Biii89.364 (14)C10—C11—H11A109.7
Cl3i—Bi—Biii89.364 (14)N2—C11—H11B109.7
Cl1—Bi—Biii43.076 (18)C10—C11—H11B109.7
Cl1ii—Bi—Biii39.921 (15)H11A—C11—H11B108.2
Bi—Cl1—Biii97.00 (2)N2—C12—C13110.8 (2)
C14—O2—H4109.5N2—C12—H12A109.5
C3—O3—H3109.5C13—C12—H12A109.5
H5B—O5—H5C117 (3)N2—C12—H12B109.5
C7—N1—C13118.3 (2)C13—C12—H12B109.5
C7—N1—C10118.5 (2)H12A—C12—H12B108.1
C13—N1—C10111.7 (2)N1—C13—C12110.1 (2)
C17—N2—C11111.8 (2)N1—C13—H13A109.6
C17—N2—C12111.1 (2)C12—C13—H13A109.6
C11—N2—C12109.50 (19)N1—C13—H13B109.6
C17—N2—H2108.1C12—C13—H13B109.6
C11—N2—H2108.1H13A—C13—H13B108.2
C12—N2—H2108.1O1—C14—O2123.6 (2)
C1—N3—C9120.1 (2)O1—C14—C2122.4 (2)
C1—N3—C15119.4 (2)O2—C14—C2114.0 (2)
C9—N3—C15120.5 (2)N3—C15—C16112.5 (2)
N3—C1—C2123.6 (2)N3—C15—H15A109.1
N3—C1—H1A118.2C16—C15—H15A109.1
C2—C1—H1A118.2N3—C15—H15B109.1
C1—C2—C3119.7 (2)C16—C15—H15B109.1
C1—C2—C14121.2 (2)H15A—C15—H15B107.8
C3—C2—C14119.1 (2)C15—C16—H16A109.5
O3—C3—C2126.0 (2)C15—C16—H16B109.5
O3—C3—C4117.4 (2)H16A—C16—H16B109.5
C2—C3—C4116.5 (2)C15—C16—H16C109.5
C9—C4—C5118.8 (2)H16A—C16—H16C109.5
C9—C4—C3121.1 (2)H16B—C16—H16C109.5
C5—C4—C3120.1 (2)N2—C17—H17A109.5
C6—C5—C4120.0 (2)N2—C17—H17B109.5
C6—C5—H5120.0H17A—C17—H17B109.5
C4—C5—H5120.0N2—C17—H17C109.5
C5—C6—F2118.5 (2)H17A—C17—H17C109.5
C5—C6—C7123.3 (2)H17B—C17—H17C109.5
F2—C6—C7118.1 (2)

Symmetry codes: (i) x, −y+1, z; (ii) −x+1, −y+1, −z+2; (iii) −x+2, y, −z+1; (iv) x+1, −y+1, z; (v) −x+3/2, y+1/2, −z+1; (vi) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H4···Cl5vii0.842.183.014 (2)174
O3—H3···O10.841.962.675 (3)143
O3—H3···Cl6viii0.842.062.559 (5)118
O5—H5B···O1ix0.83 (1)2.009 (18)2.790 (3)157 (4)
O5—H5C···O7x0.83 (1)2.029 (13)2.851 (5)173 (3)
O5—H5C···Cl7x0.83 (1)2.238 (13)3.056 (4)170 (3)
N2—H2···Cl1xi0.932.523.262 (2)137
N2—H2···Cl3xii0.932.773.423 (2)128

Symmetry codes: (vii) x, y, z+1; (viii) −x+3/2, y−1/2, −z+1; (ix) −x+1/2, −y+1/2, −z+1; (x) −x, −y+1, −z+1; (xi) −x+1, −y+1, −z+1; (xii) −x+1, y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2612).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography