PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m933.
Published online 2008 June 19. doi:  10.1107/S160053680801756X
PMCID: PMC2961792

Poly[[triaqua­tri-μ5-tartrato-dilanthanum(III)] dihydrate]

Abstract

In the title polymer, {[La2(C4H4O6)3(H2O)3]·2H2O}n, two symmetry-independent LaIII ions are nine-coordinated and display a distorted monocapped square-anti­prismatic geometry. One is coordinated by seven O atoms from four tartrate ligands and two water mol­ecules, the other by eight O atoms from five tartrate ligands and one water mol­ecule. The three tartrate ligands in the asymmetric unit act identically as μ5-ligands, which link lanthanum centres to form a three-dimensional coordination framework. An extensive network of hydrogen bonds is observed in the crystal structure, involving two uncoordinated water mol­ecules, one of which is disordered over two positions, with occupancies of 0.550 (13) and 0.450 (13).

Related literature

For related literature, see: Yaghi et al. (1998 [triangle], 2003 [triangle]); Serre et al. (2004 [triangle]); James et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m933-scheme1.jpg

Experimental

Crystal data

  • [La2(C4H4O6)3(H2O)3]·2H2O
  • M r = 812.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m933-efi1.jpg
  • a = 12.6271 (2) Å
  • b = 12.9273 (2) Å
  • c = 16.6556 (3) Å
  • β = 127.801 (1)°
  • V = 2148.22 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.04 mm−1
  • T = 296 (2) K
  • 0.25 × 0.21 × 0.18 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.372, T max = 0.480
  • 19115 measured reflections
  • 3771 independent reflections
  • 3226 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.057
  • S = 1.05
  • 3771 reflections
  • 344 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801756X/bh2174sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801756X/bh2174Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges South China Normal University for supporting this work.

supplementary crystallographic information

Comment

The use of multifunctional organic linker molecules to polymerize metal centers into open-framework materials has led to the development of a rich field of chemistry (Yaghi et al., 1998, 2003; Serre et al., 2004; James, 2003) owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition. Among such novel open-framework materials, lanthanide oxalates are particularly noteworthy. The wide variety of coordination modes of the tartarate anion permits the use of metal-tartarate units as excellent building blocks to construct a great diversity of frameworks ranging from discrete oligomeric entities to one-, two- and three-dimensional networks. Recently, we obtained the title LaIII polymer, (I), and its crystal structure is reported here.

In the asymmetric unit of (I), two symmetry independent LaIII ions are nine-coordinated and display a distorted monocapped square antiprism geometry. One is coordinated by seven O atoms from four tartarate ligands and two coordinated water molecules, the other is defined by eight O atoms from five tartarate ligands and one coordinated water molecule (Fig. 1). All three unique tartarate ligands only act as one type of coordination mode, which link lanthanum centres to form a three-dimensional coordination framework (Fig. 2). The shortest La···La separations in the solid are 6.207 (2), 6.520 (3) and 6.535 (2) Å. The voids between the individual metal complex units are filled with classical hydrogen bonded (Table 1) interstitial disordered water molecules.

Experimental

A mixture of La2O3 (0.5 mmol), tartaric acid (1.5 mmol) and H2O (10 ml) in the presence of HClO4 (0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to 433 K and maintained at this temperature for 7 days, and then cooled to room temperature at 5 K.h-1. The crystals were obtained in ca. 46% yield based on La.

Refinement

Lattice water molecule O4W is disordered over two sites, O4WA and O4WB, with refined occupancies of 0.450 (13) and 0.550 (13), respectively. Water H atoms were located in a difference map and refined isotropically with Uiso(H) = 1.5Ueq(O) and a regularized geometry: O—H bond lengths were restrained to 0.82 (2)/0.85 (1) Å and H···H separations were restrained to 1.35 (2) Å for coordinated and 1.39 Å for interstitial water molecules. In the final cycles, a riding model was applied for all water H atoms. All other H atoms were placed in calculated positions with a C—H distance of 0.98 Å and O—H distance of 0.82 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) for CH groups and Uiso(H) = 1.5Ueq(O) for hydroxyl groups.

Figures

Fig. 1.
The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Fig. 2.
A packing view of (I), showing the inter and intramolecular hydrogen bonds.

Crystal data

[La2(C4H4O6)3(H2O)3]·2H2OF000 = 1568
Mr = 812.12Dx = 2.511 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15678 reflections
a = 12.6271 (2) Åθ = 1.4–28.0º
b = 12.9273 (2) ŵ = 4.04 mm1
c = 16.6556 (3) ÅT = 296 (2) K
β = 127.801 (1)ºBlock, colourless
V = 2148.22 (6) Å30.25 × 0.21 × 0.18 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer3771 independent reflections
Radiation source: fine-focus sealed tube3226 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 296(2) Kθmax = 25.2º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.372, Tmax = 0.480k = −15→14
19115 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.057  w = 1/[σ2(Fo2) + (0.0203P)2 + 3.8165P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3771 reflectionsΔρmax = 0.87 e Å3
344 parametersΔρmin = −0.65 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C1−0.0900 (4)0.9566 (4)0.5698 (3)0.0155 (10)
C2−0.1083 (4)0.8523 (4)0.5199 (3)0.0177 (10)
H2−0.02950.84160.52240.021*
C3−0.2308 (4)0.8455 (4)0.4086 (3)0.0176 (10)
H3−0.24320.91360.37820.021*
C4−0.2140 (4)0.7672 (4)0.3482 (3)0.0174 (10)
C50.0357 (5)1.0235 (4)0.9197 (3)0.0183 (10)
C60.1840 (4)0.9984 (4)0.9767 (3)0.0184 (10)
H60.22491.05870.96970.022*
C70.2635 (4)0.9782 (3)1.0918 (3)0.0165 (10)
H70.23331.02651.11930.020*
C80.4144 (4)0.9950 (4)1.1463 (3)0.0172 (10)
C90.2706 (4)0.7265 (4)0.8239 (3)0.0171 (10)
C100.2636 (4)0.6536 (4)0.8918 (3)0.0152 (10)
H100.24240.58410.86230.018*
C110.3977 (4)0.6497 (3)0.9974 (3)0.0150 (10)
H110.46870.64460.98990.018*
C120.4096 (4)0.5570 (3)1.0589 (3)0.0137 (10)
La1−0.02226 (2)0.81431 (2)0.77118 (2)0.01422 (8)
La2−0.54797 (2)0.73846 (2)0.22545 (2)0.01381 (8)
O1−0.0471 (3)0.9566 (3)0.6612 (2)0.0248 (8)
O2−0.1144 (3)1.0376 (2)0.5208 (2)0.0207 (7)
O3−0.1053 (3)0.7743 (2)0.5816 (2)0.0221 (7)
H3A−0.06610.72670.57760.033*
O4−0.3519 (3)0.8206 (2)0.3936 (2)0.0184 (7)
H4−0.36500.86450.42220.028*
O5−0.3178 (3)0.7172 (2)0.2791 (2)0.0221 (8)
O6−0.1040 (3)0.7609 (3)0.3649 (2)0.0232 (8)
O7−0.0495 (3)0.9637 (3)0.8484 (2)0.0255 (8)
O80.0074 (3)1.1045 (2)0.9438 (3)0.0226 (8)
O90.1947 (3)0.9140 (3)0.9266 (3)0.0294 (8)
H90.23720.87030.97100.044*
O100.2457 (3)0.8752 (2)1.1112 (2)0.0237 (8)
H10A0.17140.87111.09730.036*
O110.4892 (3)0.9167 (2)1.1844 (2)0.0214 (7)
O120.4517 (3)1.0853 (2)1.1460 (2)0.0213 (7)
O130.1759 (3)0.7910 (3)0.7713 (3)0.0256 (8)
O140.3687 (3)0.7181 (3)0.8235 (2)0.0235 (8)
O150.1587 (3)0.6864 (2)0.8953 (2)0.0197 (7)
H150.14380.64270.92280.030*
O160.4191 (3)0.7419 (2)1.0529 (2)0.0212 (7)
H160.45260.78321.03700.032*
O170.4440 (3)0.5724 (2)1.1455 (2)0.0238 (8)
O180.3836 (3)0.4696 (2)1.0164 (2)0.0194 (7)
O1W−0.2694 (3)0.8479 (3)0.6519 (3)0.0322 (9)
H1W−0.30290.84250.68090.048*
H2W−0.30740.89670.61290.048*
O2W−0.1015 (3)0.6276 (3)0.7134 (2)0.0307 (8)
H4W−0.17750.61380.69320.046*
H3W−0.05430.58150.75430.046*
O3W−0.7660 (3)0.6479 (3)0.1489 (3)0.0363 (10)
H6W−0.80760.64210.17150.054*
H5W−0.80250.60850.10040.054*
O5W0.6940 (6)0.5141 (5)0.6746 (7)0.139 (3)
H10W0.65040.56180.63120.208*
H9W0.64460.49370.69000.208*
O4WA0.4665 (13)0.9039 (8)0.9799 (8)0.056 (5)0.450 (13)
H4WA0.43040.84940.98180.084*0.450 (13)
H4WB0.48770.88890.94170.084*0.450 (13)
O4WB0.5902 (11)0.8436 (8)1.0338 (7)0.072 (4)0.550 (13)
H4WC0.58540.82950.98180.108*0.550 (13)
H4WD0.54000.89611.01690.108*0.550 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.008 (2)0.020 (3)0.017 (3)−0.0002 (18)0.008 (2)0.000 (2)
C20.018 (2)0.019 (3)0.019 (2)−0.0007 (19)0.013 (2)0.001 (2)
C30.014 (2)0.018 (3)0.019 (3)−0.0001 (18)0.010 (2)−0.001 (2)
C40.018 (3)0.020 (3)0.016 (2)−0.0001 (19)0.011 (2)0.002 (2)
C50.026 (3)0.015 (3)0.017 (2)0.000 (2)0.015 (2)0.005 (2)
C60.023 (2)0.016 (3)0.018 (2)−0.0038 (19)0.013 (2)−0.003 (2)
C70.025 (3)0.010 (2)0.019 (2)0.0028 (19)0.015 (2)0.003 (2)
C80.025 (3)0.015 (3)0.013 (2)0.000 (2)0.012 (2)−0.002 (2)
C90.019 (3)0.020 (3)0.013 (2)−0.0007 (19)0.010 (2)−0.001 (2)
C100.015 (2)0.015 (3)0.020 (2)0.0020 (18)0.013 (2)0.0033 (19)
C110.020 (2)0.014 (2)0.016 (2)0.0004 (18)0.013 (2)−0.0021 (19)
C120.010 (2)0.016 (3)0.018 (2)0.0019 (18)0.0102 (19)−0.002 (2)
La10.01520 (14)0.01340 (16)0.01582 (14)0.00137 (10)0.01041 (12)0.00210 (11)
La20.01507 (14)0.01329 (15)0.01485 (14)−0.00060 (10)0.01008 (12)−0.00145 (11)
O10.035 (2)0.024 (2)0.0153 (18)−0.0022 (15)0.0153 (16)−0.0006 (15)
O20.0321 (19)0.0115 (18)0.0204 (18)0.0018 (14)0.0170 (16)0.0048 (14)
O30.0296 (19)0.0142 (18)0.0211 (18)0.0049 (14)0.0148 (16)0.0042 (14)
O40.0148 (16)0.0217 (19)0.0211 (18)−0.0020 (13)0.0123 (14)−0.0078 (14)
O50.0188 (18)0.027 (2)0.0230 (18)−0.0058 (14)0.0140 (15)−0.0108 (15)
O60.0202 (18)0.031 (2)0.0234 (19)−0.0026 (14)0.0158 (15)−0.0061 (15)
O70.0218 (18)0.025 (2)0.0244 (19)−0.0017 (14)0.0116 (16)−0.0084 (16)
O80.0267 (18)0.0119 (18)0.034 (2)−0.0001 (14)0.0208 (16)−0.0045 (15)
O90.0268 (19)0.033 (2)0.0237 (19)0.0059 (15)0.0129 (16)−0.0087 (16)
O100.0199 (17)0.0202 (19)0.033 (2)0.0000 (14)0.0170 (16)0.0073 (16)
O110.0196 (17)0.0160 (18)0.0259 (18)−0.0002 (14)0.0126 (15)0.0017 (15)
O120.0273 (18)0.0150 (19)0.0174 (17)−0.0051 (14)0.0115 (15)−0.0027 (14)
O130.0247 (19)0.031 (2)0.028 (2)0.0126 (15)0.0197 (16)0.0147 (16)
O140.0207 (18)0.033 (2)0.0245 (19)0.0064 (15)0.0181 (16)0.0072 (16)
O150.0174 (17)0.0201 (19)0.0271 (19)0.0030 (13)0.0164 (15)0.0106 (15)
O160.0309 (19)0.0135 (18)0.0235 (18)−0.0071 (14)0.0189 (16)−0.0049 (14)
O170.037 (2)0.0175 (19)0.0171 (18)0.0001 (15)0.0166 (16)0.0003 (15)
O180.0267 (18)0.0165 (19)0.0195 (17)−0.0007 (14)0.0164 (15)−0.0011 (14)
O1W0.0219 (19)0.051 (2)0.028 (2)0.0068 (16)0.0173 (16)0.0164 (18)
O2W0.035 (2)0.022 (2)0.0256 (19)−0.0047 (16)0.0143 (17)−0.0026 (16)
O3W0.027 (2)0.052 (3)0.039 (2)−0.0224 (17)0.0246 (18)−0.0308 (19)
O5W0.117 (5)0.100 (5)0.255 (10)0.012 (4)0.142 (6)0.041 (6)
O4WA0.103 (11)0.045 (7)0.053 (7)−0.036 (7)0.064 (8)−0.019 (5)
O4WB0.090 (9)0.075 (8)0.056 (6)−0.033 (7)0.047 (6)0.005 (5)

Geometric parameters (Å, °)

C1—O21.245 (5)La1—O2W2.563 (3)
C1—O11.266 (5)La1—O92.679 (3)
C1—C21.525 (6)La1—O32.698 (3)
C2—O31.424 (5)La2—O52.478 (3)
C2—C31.524 (6)La2—O14ii2.488 (3)
C2—H20.9800La2—O17iii2.496 (3)
C3—O41.427 (5)La2—O3W2.505 (3)
C3—C41.531 (6)La2—O11iii2.529 (3)
C3—H30.9800La2—O42.569 (3)
C4—O61.241 (5)La2—O12iv2.606 (3)
C4—O51.269 (5)La2—O16iii2.641 (3)
C5—O81.249 (5)La2—O10iii2.730 (3)
C5—O71.265 (5)O3—H3A0.8187
C5—C61.527 (6)O4—H40.8211
C6—O91.430 (5)O6—La1v2.534 (3)
C6—C71.547 (6)O9—H90.8167
C6—H60.9800O10—La2vi2.730 (3)
C7—O101.420 (5)O10—H10A0.8180
C7—C81.543 (6)O11—La2vi2.529 (3)
C7—H70.9800O12—La2vii2.606 (3)
C8—O111.258 (5)O14—La2viii2.488 (3)
C8—O121.260 (5)O15—H150.8188
C9—O141.249 (5)O16—La2vi2.641 (3)
C9—O131.268 (5)O16—H160.8184
C9—C101.516 (6)O17—La2vi2.496 (3)
C10—O151.426 (5)O1W—H1W0.8167
C10—C111.520 (6)O1W—H2W0.8174
C10—H100.9800O2W—H4W0.8180
C11—O161.429 (5)O2W—H3W0.8220
C11—C121.523 (6)O3W—H6W0.8155
C11—H110.9800O3W—H5W0.8177
C12—O171.241 (5)O5W—H10W0.8468
C12—O181.265 (5)O5W—H9W0.8478
La1—O72.458 (3)O4WA—H4WA0.8498
La1—O12.476 (3)O4WA—H4WB0.8499
La1—O1W2.505 (3)O4WA—H4WD0.7409
La1—O132.519 (3)O4WB—H4WC0.8505
La1—O6i2.534 (3)O4WB—H4WD0.8503
La1—O152.537 (3)
O2—C1—O1122.7 (4)O1—La1—O359.64 (10)
O2—C1—C2119.5 (4)O1W—La1—O372.73 (10)
O1—C1—C2117.8 (4)O13—La1—O369.61 (10)
O3—C2—C3113.3 (4)O6i—La1—O3129.38 (10)
O3—C2—C1107.7 (4)O15—La1—O3109.80 (10)
C3—C2—C1114.6 (4)O2W—La1—O366.30 (10)
O3—C2—H2106.9O9—La1—O3131.08 (10)
C3—C2—H2106.9O5—La2—O14ii131.51 (10)
C1—C2—H2106.9O5—La2—O17iii75.65 (10)
O4—C3—C2113.9 (4)O14ii—La2—O17iii130.47 (10)
O4—C3—C4107.5 (4)O5—La2—O3W144.32 (11)
C2—C3—C4113.1 (4)O14ii—La2—O3W70.40 (10)
O4—C3—H3107.3O17iii—La2—O3W69.74 (11)
C2—C3—H3107.3O5—La2—O11iii80.05 (10)
C4—C3—H3107.3O14ii—La2—O11iii101.25 (11)
O6—C4—O5124.2 (4)O17iii—La2—O11iii126.38 (10)
O6—C4—C3118.9 (4)O3W—La2—O11iii128.09 (11)
O5—C4—C3116.8 (4)O5—La2—O461.24 (9)
O8—C5—O7124.6 (4)O14ii—La2—O472.79 (10)
O8—C5—C6117.5 (4)O17iii—La2—O4129.34 (10)
O7—C5—C6117.8 (4)O3W—La2—O4140.56 (10)
O9—C6—C5108.5 (4)O11iii—La2—O472.77 (10)
O9—C6—C7111.8 (4)O5—La2—O12iv76.47 (10)
C5—C6—C7115.0 (4)O14ii—La2—O12iv78.72 (10)
O9—C6—H6107.0O17iii—La2—O12iv68.33 (10)
C5—C6—H6107.0O3W—La2—O12iv82.92 (11)
C7—C6—H6107.0O11iii—La2—O12iv147.59 (10)
O10—C7—C8108.0 (3)O4—La2—O12iv76.44 (10)
O10—C7—C6111.6 (4)O5—La2—O16iii76.20 (10)
C8—C7—C6109.6 (3)O14ii—La2—O16iii149.60 (10)
O10—C7—H7109.2O17iii—La2—O16iii60.38 (10)
C8—C7—H7109.2O3W—La2—O16iii93.63 (10)
C6—C7—H7109.2O11iii—La2—O16iii67.75 (10)
O11—C8—O12125.4 (4)O4—La2—O16iii125.67 (9)
O11—C8—C7117.3 (4)O12iv—La2—O16iii126.16 (9)
O12—C8—C7117.2 (4)O5—La2—O10iii136.93 (10)
O14—C9—O13124.9 (4)O14ii—La2—O10iii72.81 (10)
O14—C9—C10117.5 (4)O17iii—La2—O10iii118.40 (10)
O13—C9—C10117.6 (4)O3W—La2—O10iii70.51 (11)
O15—C10—C9109.0 (3)O11iii—La2—O10iii58.50 (9)
O15—C10—C11111.5 (4)O4—La2—O10iii111.26 (10)
C9—C10—C11110.6 (4)O12iv—La2—O10iii146.07 (9)
O15—C10—H10108.6O16iii—La2—O10iii77.54 (10)
C9—C10—H10108.6C1—O1—La1131.0 (3)
C11—C10—H10108.6C2—O3—La1121.9 (3)
O16—C11—C10110.8 (4)C2—O3—H3A103.0
O16—C11—C12108.7 (3)La1—O3—H3A114.7
C10—C11—C12112.6 (4)C3—O4—La2119.8 (2)
O16—C11—H11108.2C3—O4—H4108.6
C10—C11—H11108.2La2—O4—H4121.1
C12—C11—H11108.2C4—O5—La2127.0 (3)
O17—C12—O18125.4 (4)C4—O6—La1v135.2 (3)
O17—C12—C11118.4 (4)C5—O7—La1131.3 (3)
O18—C12—C11116.2 (4)C6—O9—La1121.6 (2)
O7—La1—O178.94 (11)C6—O9—H9104.2
O7—La1—O1W76.88 (11)La1—O9—H9104.9
O1—La1—O1W75.70 (11)C7—O10—La2vi123.3 (2)
O7—La1—O13123.42 (11)C7—O10—H10A108.1
O1—La1—O1376.42 (10)La2vi—O10—H10A126.4
O1W—La1—O13140.85 (11)C8—O11—La2vi131.4 (3)
O7—La1—O6i74.88 (11)C8—O12—La2vii133.4 (3)
O1—La1—O6i145.67 (10)C9—O13—La1126.5 (3)
O1W—La1—O6i77.03 (10)C9—O14—La2viii143.6 (3)
O13—La1—O6i137.11 (10)C10—O15—La1123.8 (2)
O7—La1—O15115.51 (10)C10—O15—H15110.8
O1—La1—O15136.82 (10)La1—O15—H15120.3
O1W—La1—O15145.22 (10)C11—O16—La2vi122.1 (2)
O13—La1—O1561.51 (10)C11—O16—H16105.4
O6i—La1—O1575.61 (10)La2vi—O16—H16126.4
O7—La1—O2W142.04 (11)C12—O17—La2vi128.9 (3)
O1—La1—O2W125.34 (11)La1—O1W—H1W111.2
O1W—La1—O2W81.70 (12)La1—O1W—H2W127.1
O13—La1—O2W92.68 (11)H1W—O1W—H2W105.8
O6i—La1—O2W69.95 (11)La1—O2W—H4W116.7
O15—La1—O2W69.01 (10)La1—O2W—H3W117.0
O7—La1—O960.31 (10)H4W—O2W—H3W104.7
O1—La1—O987.05 (11)La2—O3W—H6W128.7
O1W—La1—O9136.24 (11)La2—O3W—H5W124.9
O13—La1—O968.26 (11)H6W—O3W—H5W105.5
O6i—La1—O998.66 (11)H10W—O5W—H9W105.7
O15—La1—O969.45 (10)H4WA—O4WA—H4WB105.2
O2W—La1—O9138.45 (11)H4WA—O4WA—H4WD106.4
O7—La1—O3133.15 (10)H4WC—O4WB—H4WD105.1

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, −y+3/2, z−1/2; (iii) x−1, y, z−1; (iv) −x, y−1/2, −z+3/2; (v) x, −y+3/2, z−1/2; (vi) x+1, y, z+1; (vii) −x, y+1/2, −z+3/2; (viii) x+1, −y+3/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O8iv0.821.872.677 (4)169
O4—H4···O18vii0.821.802.619 (4)174
O9—H9···O160.822.463.177 (5)147
O10—H10A···O8ix0.821.942.745 (4)167
O15—H15···O2iv0.821.822.632 (4)175
O16—H16···O4WA0.821.892.667 (9)158
O16—H16···O4WB0.821.942.708 (9)157

Symmetry codes: (iv) −x, y−1/2, −z+3/2; (vii) −x, y+1/2, −z+3/2; (ix) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2174).

References

  • Bruker (2004). SMART and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  • James, S. L. (2003). Chem. Soc. Rev.32, 276–288. [PubMed]
  • Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pellé, F. & Férey, G. (2004). J. Mater. Chem.14, 1540–1543.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  • Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography