PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m884–m885.
Published online 2008 June 7. doi:  10.1107/S1600536808016693
PMCID: PMC2961791

Diaqua­{2,6-bis­[N-(2-pyridinylmeth­yl)­carbamo­yl]­phenolato-κ2 O 1,O 2}zinc(II)

Abstract

In the title compound, [Zn(C20H17N4O3)2(H2O)2], the ZnII atom, lying on a twofold rotation axis, is six-coordinated in a distorted octa­hedral geometry by two phenolate O atoms and two carbonyl O atoms from two 2,6-bis­[(pyridin-2-ylmeth­yl)­carbamo­yl]phenolate ligands and by two water mol­ecules. A three-dimensional network is built up from an extensive array of hydrogen bonds and π–π inter­actions between the pyridyl rings, with a centroid–centroid distance of 3.666 (3) Å.

Related literature

For related literature, see: Chaudhuri et al. (2007 [triangle]); Goldsmith et al. (2002 [triangle]); Gumbley & Stewart (1984 [triangle]); Ingle et al. (2007 [triangle]); Kimura (1994 [triangle]); Lipscomb & Sträter (1996 [triangle]); Szajna-Fuller et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m884-scheme1.jpg

Experimental

Crystal data

  • [Zn(C20H17N4O3)2(H2O)2]
  • M r = 824.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m884-efi1.jpg
  • a = 16.357 (4) Å
  • b = 14.723 (4) Å
  • c = 15.135 (4) Å
  • β = 91.938 (7)°
  • V = 3642.9 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 293 (2) K
  • 0.35 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.757, T max = 0.854
  • 21455 measured reflections
  • 4398 independent reflections
  • 3575 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.130
  • S = 1.11
  • 4398 reflections
  • 260 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016693/hy2136sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016693/hy2136Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Thailand Research Fund (MRG5080149 and RTA5080006) and the Centre of Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC) are gratefully acknowledged.

supplementary crystallographic information

Comment

Zinc complexes of common amide-containing ligands have been widely explored and have received much attention in biomimetic research (Ingle et al., 2007). For example, the zinc complex with 6-(pivaloylamido-2-pyridylmethyl)amine ligand has been synthesized to serve as models for amide hydrolysis activity (Szajna-Fuller et al., 2007). Recently, zinc and copper complexes with a family of pyridylmethylamide ligands have been synthesized and showed that these ligands coordinate to metal ions with different coordination modes (Chaudhuri et al., 2007). It should be mentioned that zinc complexes containing aqua ligands have been used as model studies for zinc-hydrolase enzyme because of the functional unit at the active site of zinc-hydrolase enzyme is a zinc-bound water molecule, which is deprotonated at near neutral pH to generate a strongly nucleophilic Zn—OH group (Lipscomb & Sträter, 1996). Moreover, the aqua ligand bound to zinc ion is further stabilized via the formation of a hydrogen bond with a carboxylate or phenolic group from amino acid residues (Kimura, 1994). This hydrogen bond has been postulated to play a role in the activation of the coordinated aqua ligand in the catalytic pathway.

In an ongoing effort to study the interaction of zinc ion with aqua ligand, we report here the synthesis and characterization of the title compound, a new zinc complex with 2,6-bis[(pyridin-2-ylmethyl)carbamoyl]phenolate and aqua ligands. The electrospray mass spectrometry (ESI-MS) of the title compound confirmed the presence of the molecular species in solution. The compound has fragmentation patterns with peaks at m/z = 823.17 and 787.19; the former corresponds to the [M+2H2O+H+] ion and the latter is consistent with the loss of two coordinated water molecules [M–2H2O+H+]. The evidence for the presence of water in the complex is also given by IR absorption at 3568 cm-1. The elemental analysis agrees well with the proposed structure.

In the title compound, the ZnII atom is situated on a twofold rotation axis in a distorted octahedral coordination geometry, which is defined by two phenolate O atoms, two carbonyl O atoms and two cis water molecules (Fig. 1). The O1—Zn1—O1i and O4—Zn1—O2i [symmetry code: (i) -x, y, 1/2 - z] angles deviate from linearity (Table 1). These results are in accordance with the distorted octahedral geometry. It is noteworthy that each ligand behaves in a bidentate coordination fashion involving one phenolate O atom and one carbonyl O atom, while the two amide N atoms and pyridyl N atoms are free of coordination with the Zn atom. The two phenyl rings of coordinated molecules are tilted to one another with a dihedral angle of 72.3 (3)°. Remarkably, the intramolecular N3—H3A···O1 hydrogen bond forms a pseudo-six-membered ring (Fig. 1).

The water molecule is involved in an extensive intermolecular hydrogen-bonding network, as shown in Fig. 2. Atom O4 of aqua ligand acts as a hydrogen-bond donor to the uncoordinated carbonyl O3 atom and uncoordinated pyridyl N2 atom of adjacent complex molecules, respectively (Table 2). Additionally, the molecules are held together by intermolecular hydrogen bond between the uncoordinated amide N1 atom and uncoordinated pyridyl N4 atom. Not only the intermolecular hydrogen bonds, but also there are intermolecular π–π interactions in the crystal structure, which occur between the pyridyl rings containing atoms N2 and N4 of adjacent molecules, with a centroid–centroid distance of 3.666 (3) Å.

Experimental

Intermediate products (I), (II) (Gumbley & Stewart, 1984) and (III) (Goldsmith et al., 2002) have been synthesized in accordance with the published procedures. The methods to synthesize compounds (IV) and (V) are shown in Fig. 3.

A methanol solution (5 ml) of Zn(ClO4)2.6H2O (2.22 g, 5.96 mmol) was added dropwise to a stirred solution of compound (V) (1.00 g, 2.98 mmol) in methanol (10 ml) at room temperature and the solution was stirred for 3 h. Water (10 ml) was added to the solution to precipitate a white solid. The precipitate was filtered off and washed with water to obtain the white powder of the title compound (yield 28%, 0.66 g). m.p. 170–173 °C. Recrystallization of this powder in methanol yielded colourless block crystals of the title compound, suitable for X-ray diffraction study. Analysis, calculated for C40H38N8O8Zn: C 58.29, H 4.65, N 13.60%; found: C 58.20, H 4.67, N 13.61%. 1H-NMR (400 MHz, DMSO-d6): δ 10.95 (bs, 2H, –NH), 8.50 (d, J = 4.0 Hz, 2H, ArH), 7.95 (s, 2H, ArH), 7.74 (t, J = 7.6 Hz, 2H, ArH), 7.33 (t, J = 8.0 Hz, 2H, ArH), 7.26 (t, J = 5.6 Hz, 2H, ArH), 6.60 (bs,1H, ArH), 4.60 (s, 2H, –CH2–), 4.59 (s, 2H,–CH2–). 13C-NMR (100 MHz, DMSO-d6): δ 168.97, 159.20, 149.25, 137.39, 133.99, 122.61, 121.66, 111.55, 44.73. ESI-MS: m/z 787.19 [M–2H2O+H+], 823.17 [M+2H2O+H+].

Refinement

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic CH), 0.97 (CH2) Å and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C,N). H atoms attached to the water molecule were found in difference Fourier map and refined isotropically with atomic coordinates fixed.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted except those involved in hydrogen bonds. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, y, 0.5 ...
Fig. 2.
The three-dimensional hydrogen bonding network in the title compound. H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The synthesis of compounds (IV) and (V).

Crystal data

[Zn(C20H17N4O3)2(H2O)2]F000 = 1712
Mr = 824.18Dx = 1.503 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4398 reflections
a = 16.357 (4) Åθ = 1.9–28.0º
b = 14.723 (4) ŵ = 0.74 mm1
c = 15.135 (4) ÅT = 293 (2) K
β = 91.938 (7)ºPrism, colourless
V = 3642.9 (16) Å30.35 × 0.3 × 0.2 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer3575 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.061
T = 293(2) Kθmax = 28.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.757, Tmax = 0.854k = −19→19
21455 measured reflectionsl = −19→19
4398 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.130  w = 1/[σ2(Fo2) + (0.0553P)2 + 3.7977P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4398 reflectionsΔρmax = 0.52 e Å3
260 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. Compound (IV): To a solution of (III) (2.38 g, 10.2 mmol) in dry CH2Cl2 (5 ml) was added to a well stirred mixture of 2-(aminomethyl)-pyridine (2.60 ml, 25.5 mmol) and NEt3 (5.33 ml, 38.3 mmol) in dried CH2Cl2 (5 ml) under nitrogen atmosphere and the reaction was then left stirring overnight. Next, the solvent was removed under vacuum and the residue was purified by column chromatography on Al2O3 with 50% EtOAc:CH2Cl2 as eluent. The resulting pale yellow solid was recrystallized in diethyl ether to give a pure white solid (IV) (yield 68%, 2.68 g). m.p. 120–125 °C. 1H-NMR (400 MHz, CDCl3): δ 8.70 (s, 2H, –NH), 8.61 (d, J = 4.4 Hz, 2H, ArH), 8.20 (d, J = 8.0 Hz, 2H, ArH), 7.71 (m, 2H, PyH), 7.38 (m, 3H, ArH), 7.25 (m, 2H, ArH), 4.85 (s, 2H, –CH2–), 4.83 (s, 2H, –CH2–), 3.88 (s, 3H, –CH3). 13C-NMR (100 MHz, DMSO-d6): δ 164.90, 156.69, 156.53, 149.18, 136.81, 134.82, 127.60, 125.11, 122.45, 122.24, 63.83, 45.16.Compound (V): Anhydrous LiI (3.89 g, 28.9 mmol) was added to a well stirred solution of (IV) (0.78 g, 2.89 mmol) in anhydrous pyridine (20 ml) at room temperature. The reaction was allowed to proceed for 7 d with constant stirring. Then pyridine was removed in vacuum and the residue was dissloved in 1 M HCl (20 ml) and extracted with ethyl acetate (3 x 20 ml). The combined organic phase was dried over anhydrous Na2SO4, filtered and brought to dryness by rotary evaporation. The crude product was recrystallized in a solution of methanol and diethyl ether, giving (V) as a white solid (yield 92% ,0.95 g). m.p 100–103 °C. Analysis, calculated for C20H18N4O3: C 66.29, H 5.01, N 15.46%; found: C 66.31, H 4.99, N 15.45%. 1H-NMR (400 MHz, CDCl3): δ 8.77(s, 2H, –NH), 8.61 (d, J = 4.8 Hz, 2H, ArH), 8.11 (d, J = 7.6 Hz, 2H, ArH), 7.71 (m, 2H, ArH), 7.39 (d, J = 7.6 Hz, 2H, ArH), 7.26 (m, 2H, ArH), 7.03 (t, J = 8.0 Hz, 1H, ArH), 4.82 (s, 2H, –CH2–), 4.81 (s, 2H, –CH2–). 13C-NMR (100 MHz, CDCl3): δ 167.66, 160.59, 156.26, 149.06, 137.01, 133.28, 122.52, 122.08, 118.61, 117.94, 44.73. ESI: m/z 348.1458 [M+H+].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.02286 (15)0.19100 (17)0.05522 (17)0.0236 (5)
C20.09384 (16)0.24793 (18)0.06360 (17)0.0269 (6)
C30.14191 (17)0.26133 (19)−0.0097 (2)0.0343 (6)
H30.18850.2972−0.00360.041*
C40.12260 (19)0.2232 (2)−0.0905 (2)0.0403 (7)
H40.1560.2329−0.13820.048*
C50.05325 (18)0.1705 (2)−0.10030 (19)0.0368 (7)
H50.03950.1457−0.15530.044*
C60.00339 (16)0.15366 (17)−0.02945 (17)0.0264 (6)
C7−0.06868 (17)0.09354 (18)−0.04851 (19)0.0312 (6)
C8−0.17697 (17)0.0002 (2)0.0089 (2)0.0389 (7)
H8A−0.183−0.03140.06450.047*
H8B−0.1619−0.0445−0.03470.047*
C9−0.25903 (17)0.04027 (19)−0.01925 (18)0.0299 (6)
C10−0.27189 (18)0.1306 (2)−0.0387 (2)0.0377 (7)
H10−0.22880.1718−0.03480.045*
C11−0.3496 (2)0.1594 (2)−0.0642 (2)0.0461 (8)
H11−0.35980.2203−0.07640.055*
C12−0.4113 (2)0.0968 (3)−0.0711 (2)0.0539 (9)
H12−0.46380.1139−0.08970.065*
C13−0.3936 (2)0.0081 (3)−0.0498 (3)0.0578 (10)
H13−0.4358−0.0343−0.05390.069*
C140.11584 (15)0.29456 (18)0.14819 (19)0.0291 (6)
C150.1960 (2)0.4212 (2)0.2162 (2)0.0428 (8)
H15A0.25480.41310.22190.051*
H15B0.17230.39910.27010.051*
C160.17668 (18)0.5211 (2)0.20506 (19)0.0352 (6)
N20.23880 (15)0.57968 (17)0.21397 (17)0.0372 (6)
C200.2219 (2)0.6684 (2)0.2034 (2)0.0478 (8)
H200.26470.70970.21040.057*
C190.1456 (3)0.7013 (3)0.1829 (2)0.0544 (9)
H190.1370.76330.17530.065*
C180.0825 (2)0.6416 (3)0.1738 (3)0.0615 (10)
H180.02980.66190.15990.074*
N10.16417 (16)0.36823 (17)0.14154 (17)0.0383 (6)
H10.17710.38510.08940.046*
C170.0979 (2)0.5508 (3)0.1857 (3)0.0553 (9)
H170.05530.50910.18060.066*
N3−0.11105 (14)0.06472 (16)0.01965 (16)0.0339 (5)
H3A−0.09870.08520.07160.041*
N4−0.31909 (16)−0.02078 (19)−0.02365 (19)0.0458 (7)
O1−0.02465 (11)0.17550 (13)0.12131 (12)0.0297 (4)
O20.09257 (12)0.26946 (14)0.22198 (13)0.0363 (5)
O3−0.08908 (14)0.07239 (16)−0.12543 (15)0.0473 (6)
O40.08829 (13)0.06216 (15)0.24782 (15)0.0431 (5)
Zn100.17016 (3)0.250.02664 (14)
H240.08470.02110.20860.052 (11)*
H230.14150.0670.24760.078 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0218 (12)0.0203 (12)0.0284 (13)0.0028 (10)−0.0027 (10)0.0033 (10)
C20.0270 (13)0.0237 (13)0.0299 (14)0.0008 (11)0.0002 (11)0.0035 (11)
C30.0272 (14)0.0312 (15)0.0447 (17)−0.0039 (12)0.0047 (12)0.0051 (13)
C40.0400 (17)0.0441 (18)0.0376 (17)0.0014 (14)0.0120 (13)0.0059 (14)
C50.0395 (16)0.0410 (17)0.0299 (15)0.0054 (14)0.0015 (12)−0.0021 (13)
C60.0261 (13)0.0243 (14)0.0286 (13)0.0041 (10)−0.0012 (10)0.0015 (10)
C70.0315 (14)0.0255 (14)0.0362 (16)0.0068 (11)−0.0054 (12)−0.0068 (12)
C80.0300 (15)0.0307 (16)0.055 (2)−0.0043 (12)−0.0110 (13)0.0031 (14)
C90.0305 (14)0.0292 (14)0.0296 (14)−0.0046 (11)−0.0042 (11)0.0031 (11)
C100.0344 (16)0.0315 (15)0.0472 (18)−0.0007 (13)−0.0008 (13)0.0027 (13)
C110.0454 (19)0.0428 (19)0.050 (2)0.0122 (15)−0.0002 (15)0.0050 (15)
C120.0333 (17)0.068 (2)0.060 (2)0.0082 (17)−0.0099 (15)0.0120 (19)
C130.0321 (17)0.062 (2)0.078 (3)−0.0144 (17)−0.0142 (17)0.019 (2)
C140.0208 (13)0.0247 (13)0.0412 (16)0.0002 (10)−0.0071 (11)0.0041 (12)
C150.0442 (18)0.0369 (17)0.0462 (19)−0.0125 (14)−0.0135 (14)0.0017 (14)
C160.0353 (16)0.0353 (16)0.0346 (16)−0.0068 (13)−0.0049 (12)0.0002 (12)
N20.0360 (13)0.0322 (13)0.0427 (14)−0.0078 (11)−0.0071 (11)−0.0002 (11)
C200.059 (2)0.0314 (16)0.052 (2)−0.0095 (16)−0.0073 (16)−0.0007 (15)
C190.078 (3)0.0413 (19)0.043 (2)0.0131 (19)−0.0050 (18)−0.0011 (15)
C180.046 (2)0.067 (3)0.071 (3)0.0168 (19)−0.0048 (18)−0.002 (2)
N10.0448 (15)0.0336 (13)0.0361 (14)−0.0177 (11)−0.0047 (11)0.0052 (11)
C170.0342 (18)0.060 (2)0.071 (3)−0.0095 (16)−0.0053 (17)−0.0001 (19)
N30.0292 (12)0.0327 (13)0.0393 (14)−0.0066 (10)−0.0069 (10)−0.0016 (10)
N40.0349 (14)0.0403 (15)0.0615 (18)−0.0121 (12)−0.0109 (12)0.0156 (13)
O10.0258 (9)0.0377 (11)0.0256 (9)−0.0075 (8)0.0001 (7)0.0014 (8)
O20.0420 (12)0.0356 (11)0.0309 (11)−0.0135 (9)−0.0033 (9)0.0007 (9)
O30.0514 (13)0.0489 (14)0.0410 (13)−0.0034 (11)−0.0087 (10)−0.0180 (11)
O40.0323 (12)0.0397 (12)0.0567 (14)0.0075 (9)−0.0049 (10)−0.0215 (11)
Zn10.0272 (2)0.0271 (2)0.0254 (2)0−0.00199 (16)0

Geometric parameters (Å, °)

C1—O11.307 (3)C13—H130.93
C1—C61.421 (4)C14—O21.248 (3)
C1—C21.434 (4)C14—N11.348 (3)
C2—C31.395 (4)C15—N11.455 (4)
C2—C141.486 (4)C15—C161.514 (4)
C3—C41.373 (4)C15—H15A0.97
C3—H30.93C15—H15B0.97
C4—C51.378 (4)C16—N21.336 (4)
C4—H40.93C16—C171.383 (4)
C5—C61.391 (4)N2—C201.344 (4)
C5—H50.93C20—C191.365 (5)
C6—C71.495 (4)C20—H200.93
C7—O31.240 (3)C19—C181.361 (6)
C7—N31.332 (4)C19—H190.93
C8—N31.442 (4)C18—C171.371 (5)
C8—C91.514 (4)C18—H180.93
C8—H8A0.97N1—H10.86
C8—H8B0.97C17—H170.93
C9—N41.332 (4)N3—H3A0.86
C9—C101.377 (4)O1—Zn11.9772 (18)
C10—C111.382 (4)O2—Zn12.1572 (19)
C10—H100.93O4—Zn12.149 (2)
C11—C121.368 (5)O4—H240.85
C11—H110.93O4—H230.87
C12—C131.374 (5)Zn1—O1i1.9772 (18)
C12—H120.93Zn1—O4i2.149 (2)
C13—N41.338 (4)Zn1—O2i2.1572 (19)
O1—C1—C6120.1 (2)C16—C15—H15A109.3
O1—C1—C2122.3 (2)N1—C15—H15B109.3
C6—C1—C2117.5 (2)C16—C15—H15B109.3
C3—C2—C1119.3 (2)H15A—C15—H15B108
C3—C2—C14119.5 (2)N2—C16—C17121.2 (3)
C1—C2—C14121.2 (2)N2—C16—C15117.5 (3)
C4—C3—C2122.1 (3)C17—C16—C15121.3 (3)
C4—C3—H3118.9C16—N2—C20117.6 (3)
C2—C3—H3118.9N2—C20—C19123.7 (3)
C3—C4—C5119.3 (3)N2—C20—H20118.2
C3—C4—H4120.4C19—C20—H20118.2
C5—C4—H4120.4C18—C19—C20118.6 (3)
C4—C5—C6121.3 (3)C18—C19—H19120.7
C4—C5—H5119.3C20—C19—H19120.7
C6—C5—H5119.3C19—C18—C17118.8 (4)
C5—C6—C1120.4 (2)C19—C18—H18120.6
C5—C6—C7115.9 (2)C17—C18—H18120.6
C1—C6—C7123.7 (2)C14—N1—C15124.6 (3)
O3—C7—N3121.1 (3)C14—N1—H1117.7
O3—C7—C6121.0 (3)C15—N1—H1117.7
N3—C7—C6117.8 (2)C18—C17—C16120.1 (3)
N3—C8—C9115.3 (2)C18—C17—H17119.9
N3—C8—H8A108.4C16—C17—H17119.9
C9—C8—H8A108.4C7—N3—C8122.0 (3)
N3—C8—H8B108.4C7—N3—H3A119
C9—C8—H8B108.4C8—N3—H3A119
H8A—C8—H8B107.5C9—N4—C13117.6 (3)
N4—C9—C10122.3 (3)C1—O1—Zn1130.85 (16)
N4—C9—C8113.4 (2)C14—O2—Zn1127.87 (18)
C10—C9—C8124.3 (3)Zn1—O4—H24121
C9—C10—C11119.2 (3)Zn1—O4—H23128
C9—C10—H10120.4H24—O4—H2396
C11—C10—H10120.4O1—Zn1—O1i175.44 (11)
C12—C11—C10118.9 (3)O1—Zn1—O4i85.97 (8)
C12—C11—H11120.5O1i—Zn1—O4i97.42 (8)
C10—C11—H11120.5O1—Zn1—O497.42 (8)
C11—C12—C13118.3 (3)O1i—Zn1—O485.97 (8)
C11—C12—H12120.8O4i—Zn1—O484.55 (12)
C13—C12—H12120.8O1—Zn1—O284.29 (7)
N4—C13—C12123.6 (3)O1i—Zn1—O292.61 (8)
N4—C13—H13118.2O4i—Zn1—O2168.82 (8)
C12—C13—H13118.2O4—Zn1—O291.26 (8)
O2—C14—N1120.2 (3)O1—Zn1—O2i92.61 (8)
O2—C14—C2124.2 (2)O1i—Zn1—O2i84.29 (7)
N1—C14—C2115.7 (2)O4i—Zn1—O2i91.26 (8)
N1—C15—C16111.5 (3)O4—Zn1—O2i168.82 (8)
N1—C15—H15A109.3O2—Zn1—O2i94.67 (12)
O1—C1—C2—C3179.9 (2)C17—C16—N2—C200.0 (5)
C6—C1—C2—C3−2.4 (4)C15—C16—N2—C20179.5 (3)
O1—C1—C2—C14−1.7 (4)C16—N2—C20—C19−1.0 (5)
C6—C1—C2—C14176.1 (2)N2—C20—C19—C181.0 (6)
C1—C2—C3—C41.4 (4)C20—C19—C18—C170.0 (6)
C14—C2—C3—C4−177.1 (3)O2—C14—N1—C152.9 (4)
C2—C3—C4—C50.5 (5)C2—C14—N1—C15−177.0 (3)
C3—C4—C5—C6−1.3 (5)C16—C15—N1—C14−127.1 (3)
C4—C5—C6—C10.2 (4)C19—C18—C17—C16−1.0 (6)
C4—C5—C6—C7−178.5 (3)N2—C16—C17—C181.0 (5)
O1—C1—C6—C5179.4 (2)C15—C16—C17—C18−178.5 (3)
C2—C1—C6—C51.6 (4)O3—C7—N3—C86.7 (4)
O1—C1—C6—C7−1.9 (4)C6—C7—N3—C8−174.4 (2)
C2—C1—C6—C7−179.8 (2)C9—C8—N3—C7−83.3 (4)
C5—C6—C7—O3−10.8 (4)C10—C9—N4—C131.4 (5)
C1—C6—C7—O3170.5 (3)C8—C9—N4—C13−178.6 (3)
C5—C6—C7—N3170.3 (2)C12—C13—N4—C9−0.8 (6)
C1—C6—C7—N3−8.4 (4)C6—C1—O1—Zn1151.87 (19)
N3—C8—C9—N4−176.5 (3)C2—C1—O1—Zn1−30.4 (4)
N3—C8—C9—C103.5 (5)N1—C14—O2—Zn1168.55 (19)
N4—C9—C10—C11−0.3 (5)C2—C14—O2—Zn1−11.5 (4)
C8—C9—C10—C11179.7 (3)C1—O1—Zn1—O4i−143.2 (2)
C9—C10—C11—C12−1.4 (5)C1—O1—Zn1—O4−59.2 (2)
C10—C11—C12—C131.9 (5)C1—O1—Zn1—O231.3 (2)
C11—C12—C13—N4−0.8 (6)C1—O1—Zn1—O2i125.8 (2)
C3—C2—C14—O2−159.3 (3)C14—O2—Zn1—O1−9.8 (2)
C1—C2—C14—O222.2 (4)C14—O2—Zn1—O1i173.6 (2)
C3—C2—C14—N120.6 (4)C14—O2—Zn1—O4i19.8 (6)
C1—C2—C14—N1−157.9 (2)C14—O2—Zn1—O487.6 (2)
N1—C15—C16—N2−127.8 (3)C14—O2—Zn1—O2i−101.9 (2)
N1—C15—C16—C1751.7 (4)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.861.932.623 (3)136
N1—H1···N4ii0.862.203.007 (4)155
O4—H24···O3iii0.851.872.712 (3)174
O4—H23···N2iv0.872.032.879 (3)163

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x, −y, −z; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2136).

References

  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chaudhuri, U. P., Yang, L., Whiteaker, L. R., Mondal, A., Fultz, M. R., Powell, D. R. & Houser, R. P. (2007). Polyhedron, 26, 5420–5431.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Goldsmith, C. R., Jonas, R. T. & Stack, T. D. P. (2002). J. Am. Chem. Soc.124, 83–96. [PubMed]
  • Gumbley, S. J. & Stewart, R. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 529–531.
  • Ingle, G. K., Makowska-Grzyska, M. M., Szajna-Fuller, E., Sen, I., Price, J. C., Arif, A. M. & Berreau, L. M. (2007). Inorg. Chem.46, 1471–1480. [PubMed]
  • Kimura, E. (1994). Prog. Inorg. Chem.41, 443–450.
  • Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev.96, 2375–2434. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Szajna-Fuller, E., Ingle, G. K., Watkins, R. W., Arif, A. M. & Berreau, L. M. (2007). Inorg. Chem.46, 2353–2355. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography