PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1264.
Published online 2008 June 13. doi:  10.1107/S1600536808017054
PMCID: PMC2961782

2-[5-(4-Hydroxy­phen­yl)-1-phenyl-1H-pyrazol-3-yl]phenol

Abstract

The title compound, C21H16N2O2, was derived from 1-(2-hydroxy­phen­yl)-3-(4-methoxy­phen­yl)propane-1,3-dione. The pyrazole ring and one of the hydr­oxy-substituted benzene rings are approximately coplanar, forming a dihedral angle of 7.5 (3)°. The relative conformation of these rings may be influenced by an intra­molecular O—H(...)N hydrogen bond. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds involving different hydr­oxy groups of symmetry-related mol­ecules form extended chains along [201].

Related literature

For related literature, see: Ahmad et al. (1990 [triangle], 1997 [triangle]); Beeam et al. (1984 [triangle]); Elguero (1983 [triangle]); Trofinenko (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1264-scheme1.jpg

Experimental

Crystal data

  • C21H16N2O2
  • M r = 328.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1264-efi1.jpg
  • a = 10.793 (3) Å
  • b = 12.948 (3) Å
  • c = 11.705 (3) Å
  • β = 93.508 (14)°
  • V = 1632.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.44 × 0.40 × 0.26 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 5767 measured reflections
  • 3720 independent reflections
  • 2353 reflections with I > 2σ(I)
  • R int = 0.024
  • 3 standard reflections every 97 reflections intensity decay: 3.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.03
  • 3720 reflections
  • 227 parameters
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: XSCANS (Siemens, 1999 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL-Plus; molecular graphics: SHELXTL-Plus and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL-Plus.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017054/lh2632sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017054/lh2632Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AB is grateful to the Higher Education Commission of Pakistan for the PhD scholarship grant.

supplementary crystallographic information

Comment

Pyrazoles are important because of their potential for biological activity (Beeam et al., 1984). Both traditional and new scientific methods have been used used to prepare new materials for medicine (Elguero et al., 1983) and agriculture (Trofinenko, 1972). Neutral and anionic pyrazoles are excellent ligands and their co-ordination chemistry has been extensively studied (Bonati, 1980). In the molecular structure of the title compound (III) (Fig. 1 and Fig. 3) there is an intramolecular hydrogen bond between the OH group of one phenolic group and the N atom of the pyrazole group (see Table 1 for hydrogen bond details). One of the phenyl groups is approximately coplanar with the pyrazole groups (dihedral angle = 7.5 (3)°), possibly due to the intramolecular hydrogen bond formation. The other two phenyl groups are rotated by 66.4 (12)°. In the crystal structure an intermolecular hydrogen bond between non equivalent hydroxy groups of symmetry related molecules, forms extended chains along [201] (Fig. 2).

Experimental

Compound (I) [see Fig. 3] was prepared by a modified Baker Venkataram rearrangement as reported earlier (Ahmad et al., 1990, 1997). Purification was carried out by recrystallization using absolute ethanol. Compound (II) was synthesized by adding 0.1 mole of phenyl hydrazine in 0.1 mole of compound (II) dissolved in 200 ml of absolute ethanol. The mixture was refluxed for 7 h. Solvent was removed under reduced pressure. Highly viscous residue was recrystallized using absolute ethanol. Compound (III) was synthesized by demethylation of compound (II) using 48% hydrogen bromide in acetic acid. Single crystals suitable for X-ray analysis were obtained by recrystallization from an ethanol solution of (III) at room temperature (Yield: 96%, m.p: 490K).

Refinement

All H atoms were placed in idealized positions and treated as riding atoms, with C—H = 0.93Å, O-H = 0.82Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of (III) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of (III) showing the hydrogen bonds as dashed lines.
Fig. 3.
Reaction scheme.

Crystal data

C21H16N2O2F000 = 688
Mr = 328.36Dx = 1.336 Mg m3
Monoclinic, P21/cMelting point: 490 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 10.793 (3) ÅCell parameters from 84 reflections
b = 12.948 (3) Åθ = 4.6–12.4º
c = 11.705 (3) ŵ = 0.09 mm1
β = 93.508 (14)ºT = 298 (2) K
V = 1632.7 (7) Å3Prismatic, colourless
Z = 40.44 × 0.40 × 0.26 mm

Data collection

Siemens P4 diffractometerRint = 0.024
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 1.9º
T = 298(2) Kh = −14→4
2θ/ω scansk = −16→1
Absorption correction: nonel = −15→15
5767 measured reflections3 standard reflections
3720 independent reflections every 97 reflections
2353 reflections with I > 2σ(I) intensity decay: 3.7%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047  w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4416P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.15 e Å3
3720 reflectionsΔρmin = −0.16 e Å3
227 parametersExtinction correction: SHELXTL-Plus (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (18)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.19429 (12)0.33852 (11)−0.38082 (11)0.0598 (4)
H1B−0.26270.3197−0.36210.090*
O20.55378 (12)0.16872 (10)0.17109 (13)0.0603 (4)
H2B0.50540.20640.13390.090*
N10.26395 (13)0.27005 (12)−0.01205 (13)0.0467 (4)
N20.34918 (13)0.21948 (12)0.05691 (13)0.0462 (4)
C10.3431 (2)0.43942 (17)−0.05478 (19)0.0628 (6)
H1A0.40750.4086−0.09150.075*
C20.3343 (3)0.54518 (19)−0.0493 (2)0.0775 (7)
H2A0.39330.5863−0.08210.093*
C30.2391 (2)0.58993 (18)0.0041 (2)0.0721 (7)
H3A0.23260.66150.00640.087*
C40.1531 (2)0.53006 (17)0.0543 (2)0.0653 (6)
H4A0.08910.56100.09150.078*
C50.16142 (18)0.42387 (16)0.04968 (17)0.0546 (5)
H5A0.10350.38270.08370.066*
C60.25650 (16)0.38005 (14)−0.00589 (15)0.0460 (4)
C70.21875 (16)0.10653 (14)−0.03158 (15)0.0437 (4)
H7A0.18150.0444−0.05400.052*
C80.18333 (15)0.20293 (15)−0.06634 (15)0.0433 (4)
C90.08425 (15)0.23722 (14)−0.14967 (15)0.0441 (4)
C10−0.03190 (17)0.19422 (15)−0.15016 (17)0.0523 (5)
H10A−0.04740.1428−0.09750.063*
C11−0.12620 (17)0.22564 (16)−0.22714 (17)0.0543 (5)
H11A−0.20410.1950−0.22660.065*
C12−0.10491 (16)0.30191 (14)−0.30416 (15)0.0460 (4)
C130.01140 (17)0.34379 (16)−0.30736 (16)0.0516 (5)
H13A0.02690.3941−0.36140.062*
C140.10531 (17)0.31154 (16)−0.23075 (16)0.0507 (5)
H14A0.18410.3402−0.23370.061*
C150.32262 (15)0.11962 (14)0.04482 (14)0.0407 (4)
C160.40064 (15)0.04285 (14)0.10482 (14)0.0404 (4)
C170.36890 (17)−0.06076 (15)0.10014 (15)0.0476 (4)
H17A0.2955−0.08040.06030.057*
C180.44262 (18)−0.13518 (16)0.15259 (17)0.0554 (5)
H18A0.4201−0.20440.14710.066*
C190.55033 (18)−0.10638 (17)0.21343 (16)0.0546 (5)
H19A0.6000−0.15630.25030.066*
C200.58441 (18)−0.00551 (16)0.21988 (16)0.0525 (5)
H20A0.65720.01330.26130.063*
C210.51143 (16)0.06923 (14)0.16520 (15)0.0447 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0470 (8)0.0663 (9)0.0638 (8)0.0073 (7)−0.0160 (6)0.0117 (7)
O20.0474 (8)0.0503 (8)0.0796 (10)0.0043 (6)−0.0253 (7)−0.0134 (7)
N10.0380 (8)0.0451 (9)0.0548 (9)0.0054 (7)−0.0141 (7)−0.0037 (7)
N20.0375 (8)0.0480 (9)0.0514 (8)0.0067 (7)−0.0119 (7)−0.0054 (7)
C10.0587 (13)0.0636 (14)0.0668 (13)−0.0021 (11)0.0084 (10)0.0014 (11)
C20.0867 (18)0.0632 (15)0.0824 (16)−0.0137 (14)0.0036 (14)0.0141 (13)
C30.0878 (18)0.0479 (12)0.0775 (15)0.0045 (12)−0.0202 (14)0.0046 (11)
C40.0574 (13)0.0601 (13)0.0764 (14)0.0163 (11)−0.0138 (11)−0.0140 (11)
C50.0446 (10)0.0554 (12)0.0631 (12)0.0036 (9)−0.0028 (9)−0.0045 (10)
C60.0423 (10)0.0457 (10)0.0483 (10)0.0043 (8)−0.0104 (8)−0.0023 (8)
C70.0368 (9)0.0468 (10)0.0467 (9)−0.0006 (8)−0.0051 (7)−0.0039 (8)
C80.0324 (8)0.0524 (10)0.0443 (9)0.0035 (8)−0.0032 (7)−0.0031 (8)
C90.0348 (9)0.0504 (10)0.0460 (9)0.0036 (8)−0.0063 (7)−0.0021 (8)
C100.0423 (10)0.0558 (11)0.0572 (11)−0.0031 (9)−0.0089 (8)0.0118 (9)
C110.0363 (9)0.0598 (12)0.0651 (12)−0.0072 (9)−0.0108 (9)0.0073 (10)
C120.0400 (9)0.0490 (10)0.0475 (10)0.0079 (8)−0.0103 (8)−0.0008 (8)
C130.0477 (11)0.0601 (12)0.0465 (10)−0.0009 (9)−0.0014 (8)0.0095 (9)
C140.0359 (9)0.0654 (12)0.0500 (10)−0.0050 (9)−0.0021 (8)0.0021 (9)
C150.0351 (9)0.0465 (10)0.0400 (8)0.0025 (8)−0.0022 (7)−0.0052 (8)
C160.0344 (8)0.0487 (10)0.0375 (8)0.0031 (8)−0.0034 (7)−0.0033 (7)
C170.0415 (10)0.0524 (11)0.0478 (10)−0.0047 (8)−0.0051 (8)0.0032 (8)
C180.0518 (11)0.0526 (12)0.0612 (11)0.0003 (9)−0.0005 (9)0.0094 (9)
C190.0480 (11)0.0617 (13)0.0540 (11)0.0108 (10)0.0012 (9)0.0122 (10)
C200.0407 (10)0.0663 (13)0.0488 (10)0.0059 (9)−0.0097 (8)−0.0004 (9)
C210.0391 (9)0.0491 (10)0.0449 (9)0.0044 (8)−0.0052 (8)−0.0084 (8)

Geometric parameters (Å, °)

O1—C121.362 (2)C8—C91.471 (2)
O1—H1B0.8200C9—C101.371 (3)
O2—C211.367 (2)C9—C141.380 (3)
O2—H2B0.8200C10—C111.379 (3)
N1—N21.3549 (19)C10—H10A0.9300
N1—C81.360 (2)C11—C121.366 (3)
N1—C61.428 (2)C11—H11A0.9300
N2—C151.330 (2)C12—C131.370 (3)
C1—C61.363 (3)C13—C141.376 (3)
C1—C21.374 (3)C13—H13A0.9300
C1—H1A0.9300C14—H14A0.9300
C2—C31.364 (4)C15—C161.455 (2)
C2—H2A0.9300C16—C171.385 (3)
C3—C41.369 (3)C16—C211.394 (2)
C3—H3A0.9300C17—C181.371 (3)
C4—C51.379 (3)C17—H17A0.9300
C4—H4A0.9300C18—C191.377 (3)
C5—C61.371 (3)C18—H18A0.9300
C5—H5A0.9300C19—C201.358 (3)
C7—C81.360 (3)C19—H19A0.9300
C7—C151.401 (2)C20—C211.380 (3)
C7—H7A0.9300C20—H20A0.9300
C12—O1—H1B109.5C11—C10—H10A119.3
C21—O2—H2B109.5C12—C11—C10119.82 (17)
N2—N1—C8111.18 (15)C12—C11—H11A120.1
N2—N1—C6119.34 (14)C10—C11—H11A120.1
C8—N1—C6128.64 (14)O1—C12—C11123.06 (17)
C15—N2—N1105.81 (13)O1—C12—C13117.22 (17)
C6—C1—C2119.5 (2)C11—C12—C13119.71 (16)
C6—C1—H1A120.3C12—C13—C14120.10 (18)
C2—C1—H1A120.3C12—C13—H13A120.0
C3—C2—C1120.0 (2)C14—C13—H13A120.0
C3—C2—H2A120.0C13—C14—C9120.92 (17)
C1—C2—H2A120.0C13—C14—H14A119.5
C2—C3—C4120.4 (2)C9—C14—H14A119.5
C2—C3—H3A119.8N2—C15—C7110.14 (15)
C4—C3—H3A119.8N2—C15—C16119.87 (15)
C3—C4—C5120.0 (2)C7—C15—C16129.96 (16)
C3—C4—H4A120.0C17—C16—C21117.38 (16)
C5—C4—H4A120.0C17—C16—C15120.54 (15)
C6—C5—C4118.9 (2)C21—C16—C15122.04 (16)
C6—C5—H5A120.5C18—C17—C16121.86 (18)
C4—C5—H5A120.5C18—C17—H17A119.1
C1—C6—C5121.20 (19)C16—C17—H17A119.1
C1—C6—N1119.94 (18)C17—C18—C19119.33 (19)
C5—C6—N1118.86 (18)C17—C18—H18A120.3
C8—C7—C15106.22 (15)C19—C18—H18A120.3
C8—C7—H7A126.9C20—C19—C18120.44 (18)
C15—C7—H7A126.9C20—C19—H19A119.8
N1—C8—C7106.65 (14)C18—C19—H19A119.8
N1—C8—C9122.37 (17)C19—C20—C21120.24 (18)
C7—C8—C9130.90 (17)C19—C20—H20A119.9
C10—C9—C14117.98 (16)C21—C20—H20A119.9
C10—C9—C8120.49 (17)O2—C21—C20117.24 (16)
C14—C9—C8121.51 (16)O2—C21—C16122.02 (16)
C9—C10—C11121.40 (18)C20—C21—C16120.73 (18)
C9—C10—H10A119.3
C8—N1—N2—C150.7 (2)C10—C11—C12—O1−178.41 (18)
C6—N1—N2—C15171.10 (16)C10—C11—C12—C132.6 (3)
C6—C1—C2—C3−0.4 (4)O1—C12—C13—C14178.78 (17)
C1—C2—C3—C41.2 (4)C11—C12—C13—C14−2.2 (3)
C2—C3—C4—C5−0.9 (3)C12—C13—C14—C9−0.2 (3)
C3—C4—C5—C6−0.1 (3)C10—C9—C14—C132.0 (3)
C2—C1—C6—C5−0.7 (3)C8—C9—C14—C13−179.23 (17)
C2—C1—C6—N1179.36 (19)N1—N2—C15—C7−0.6 (2)
C4—C5—C6—C10.9 (3)N1—N2—C15—C16177.64 (15)
C4—C5—C6—N1−179.09 (17)C8—C7—C15—N20.4 (2)
N2—N1—C6—C176.2 (2)C8—C7—C15—C16−177.66 (17)
C8—N1—C6—C1−115.2 (2)N2—C15—C16—C17175.03 (17)
N2—N1—C6—C5−103.7 (2)C7—C15—C16—C17−7.1 (3)
C8—N1—C6—C564.8 (3)N2—C15—C16—C21−7.4 (3)
N2—N1—C8—C7−0.4 (2)C7—C15—C16—C21170.51 (18)
C6—N1—C8—C7−169.74 (17)C21—C16—C17—C180.1 (3)
N2—N1—C8—C9−177.64 (16)C15—C16—C17—C18177.79 (17)
C6—N1—C8—C913.1 (3)C16—C17—C18—C191.1 (3)
C15—C7—C8—N10.0 (2)C17—C18—C19—C20−1.1 (3)
C15—C7—C8—C9176.91 (18)C18—C19—C20—C21−0.1 (3)
N1—C8—C9—C10−138.9 (2)C19—C20—C21—O2−177.28 (18)
C7—C8—C9—C1044.6 (3)C19—C20—C21—C161.4 (3)
N1—C8—C9—C1442.4 (3)C17—C16—C21—O2177.27 (17)
C7—C8—C9—C14−134.1 (2)C15—C16—C21—O2−0.4 (3)
C14—C9—C10—C11−1.6 (3)C17—C16—C21—C20−1.4 (3)
C8—C9—C10—C11179.66 (18)C15—C16—C21—C20−179.04 (17)
C9—C10—C11—C12−0.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.822.052.824 (2)158
O2—H2B···N20.821.872.595 (2)147

Symmetry codes: (i) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2632).

References

  • Ahmad, R., Malik, M. A. & Zia-ul-Haq, M. (1990). J. Chem. Soc. Pak.12, 352–355.
  • Ahmad, R., Zia-ul-Haq, M., Duddeek, H., Stefaniak, L. & Kowski, J. S. (1997). Monatsh. Chem.128, 633–640.
  • Beeam, C. F., Hall, H. L., Huff, A. M., Tummons, R. C. & Grady, S. A. O. (1984). J. Heteroatom. Chem.21, 1897–1902.
  • Bonati, F. (1980). Chim. Ind. (Roma), 62, 323–328,.
  • Elguero, J. (1983). Comprehensive Heterocyclic Chemistry, Vol. 5, Part 4A, pp. 167, 304. Elmford, New York: Pergamon Press.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1999). XSCANS User’s Manual Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
  • Trofinenko, S. (1972). Chem. Rev.72, 497–500.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography