PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1273.
Published online 2008 June 13. doi:  10.1107/S1600536808017613
PMCID: PMC2961771

4-[(E)-(3-Methyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-4-yl)imino­meth­yl]benzonitrile

Abstract

In the title compound, C11H9N5S, the dihedral angle between the mean planes of the thione-substituted triazole ring and benzonitrile ring is 4.28 (3)°. Inter­molecular N—H(...)S hydrogen bonds link the mol­ecules together into characteristic dimers.

Related literature

For the application of benzotriazole compounds in industry, see: Sharma & Bahel (1982 [triangle]); Grasso (1988 [triangle]); Eweiss et al. (1986 [triangle]); Awad et al. (1991 [triangle]); Pillard et al. (2001 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1273-scheme1.jpg

Experimental

Crystal data

  • C11H9N5S
  • M r = 243.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1273-efi1.jpg
  • a = 6.975 (2) Å
  • b = 7.682 (2) Å
  • c = 11.412 (2) Å
  • α = 90.262 (7)°
  • β = 94.328 (14)°
  • γ = 104.713 (17)°
  • V = 589.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 (2) K
  • 0.70 × 0.50 × 0.50 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.854, T max = 0.901
  • 5954 measured reflections
  • 2659 independent reflections
  • 2178 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.115
  • S = 1.05
  • 2659 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017613/rn2041sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017613/rn2041Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

It has been found that 1,2,4-thiadiazoles possess a broad spectrum of biological activities and can be widely used as fungicides (Sharma & Bahel, 1982) and insecticides (Grasso, 1988). In addition, amine- and thione-substituted triazoles have been studied as anti-inflammatory and antimicrobial agents (Eweiss et al., 1986; Awad et al., 1991). Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures, such as coolants, cutting fluids and hydraulic fluids (Pillard et al., 2001). We present its crystal structure here. The molecule exists in the thione tautomeric form, with an S···C distance of 1.6752 (3) A °, which indicates substantial double-bond character for this bond [1.671 (24) A °, Allen et al., 1987]. The dihedral angle between thione-substituted triazole ring and benzonitrile ring is 4.28 (3) °. N-H···N hydrogen bonds are observed in the crystal structure which link the molecules into dimers.

Experimental

A mixture of 4-amino-3-methanyl-1H-1,2,4-triazole-5(4H)- thione (0.02 mol) and 4-formylbenzonitrile (0.02 mol) was refluxed at 391 K for 20 min in methanol. The mixture was then filtered and crystallized from ethanol to afford the target material (yield 89%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were calculated geometrically, with C—H distances in the range 0.93 to 0.97Å and an N—H distance of 0.86 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the other H atoms.

Figures

Fig. 1.
A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
A packing diagram of the title compound, viewed down the a axis.

Crystal data

C11H9N5SZ = 2
Mr = 243.29F000 = 252
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.975 (2) ÅCell parameters from 1492 reflections
b = 7.682 (2) Åθ = 3.0–27.4º
c = 11.412 (2) ŵ = 0.26 mm1
α = 90.262 (7)ºT = 293 (2) K
β = 94.328 (14)ºBlock, colorless
γ = 104.713 (17)º0.70 × 0.50 × 0.50 mm
V = 589.5 (3) Å3

Data collection

Rigaku Mercury2 diffractometer2659 independent reflections
Radiation source: fine-focus sealed tube2178 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.2º
CCD_Profile_fitting scansh = −9→9
Absorption correction: Multi-scan(CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.854, Tmax = 0.901l = −14→14
5954 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.0532P)2 + 0.1343P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2659 reflectionsΔρmax = 0.18 e Å3
155 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2635 (2)1.3033 (2)0.27180 (13)0.0379 (3)
C20.1665 (3)1.0264 (2)0.18636 (14)0.0439 (4)
C30.1029 (4)0.8280 (3)0.17603 (17)0.0617 (5)
H3A0.06290.79220.09530.093*
H3B−0.00700.78400.22300.093*
H3C0.21150.77890.20300.093*
C40.2745 (2)1.1001 (2)0.49268 (13)0.0400 (4)
H40.31961.22480.49920.048*
C50.2738 (2)0.9871 (2)0.59672 (13)0.0371 (3)
C60.3299 (3)1.0685 (2)0.70682 (14)0.0487 (4)
H60.36781.19340.71420.058*
C70.3300 (3)0.9654 (3)0.80588 (15)0.0539 (5)
H70.36521.02060.87980.065*
C80.2773 (3)0.7799 (2)0.79417 (15)0.0476 (4)
C90.2227 (3)0.6970 (2)0.68453 (16)0.0514 (4)
H90.18790.57210.67720.062*
C100.2200 (3)0.8001 (2)0.58632 (15)0.0461 (4)
H100.18210.74450.51270.055*
C110.2800 (3)0.6704 (3)0.89609 (17)0.0601 (5)
N10.21505 (19)1.11995 (17)0.29285 (10)0.0362 (3)
N20.1847 (2)1.1369 (2)0.10000 (12)0.0524 (4)
N30.2429 (2)1.3038 (2)0.15394 (12)0.0485 (4)
H3D0.26471.40170.11510.058*
N40.2117 (2)1.02188 (17)0.39419 (11)0.0385 (3)
N50.2817 (3)0.5822 (3)0.97577 (16)0.0811 (6)
S10.32744 (8)1.48037 (6)0.36283 (4)0.05691 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0412 (8)0.0381 (8)0.0336 (8)0.0090 (6)0.0012 (6)0.0115 (6)
C20.0541 (10)0.0461 (9)0.0328 (8)0.0162 (7)−0.0013 (7)0.0027 (6)
C30.0905 (15)0.0456 (10)0.0494 (11)0.0217 (10)−0.0072 (10)−0.0044 (8)
C40.0457 (9)0.0390 (8)0.0350 (8)0.0100 (7)0.0031 (6)0.0111 (6)
C50.0366 (8)0.0433 (8)0.0325 (7)0.0115 (6)0.0048 (6)0.0131 (6)
C60.0612 (11)0.0433 (9)0.0377 (8)0.0070 (8)0.0003 (7)0.0109 (7)
C70.0647 (11)0.0623 (11)0.0325 (8)0.0130 (9)0.0007 (7)0.0134 (8)
C80.0463 (9)0.0592 (11)0.0412 (9)0.0186 (8)0.0096 (7)0.0259 (8)
C90.0628 (11)0.0426 (9)0.0525 (10)0.0180 (8)0.0112 (8)0.0191 (8)
C100.0576 (10)0.0443 (9)0.0382 (9)0.0160 (8)0.0048 (7)0.0102 (7)
C110.0646 (12)0.0709 (13)0.0517 (11)0.0264 (10)0.0144 (9)0.0305 (10)
N10.0438 (7)0.0370 (7)0.0279 (6)0.0105 (5)0.0016 (5)0.0089 (5)
N20.0719 (10)0.0542 (9)0.0308 (7)0.0172 (8)−0.0013 (6)0.0065 (6)
N30.0652 (9)0.0451 (8)0.0328 (7)0.0103 (7)0.0016 (6)0.0154 (6)
N40.0465 (7)0.0389 (7)0.0312 (6)0.0125 (6)0.0041 (5)0.0136 (5)
N50.1056 (16)0.0881 (14)0.0603 (11)0.0394 (12)0.0213 (10)0.0456 (10)
S10.0794 (4)0.0363 (2)0.0488 (3)0.0070 (2)−0.0080 (2)0.00552 (19)

Geometric parameters (Å, °)

C1—N31.3420 (19)C6—C71.383 (2)
C1—N11.3887 (19)C6—H60.9300
C1—S11.6546 (17)C7—C81.382 (3)
C2—N21.296 (2)C7—H70.9300
C2—N11.384 (2)C8—C91.383 (3)
C2—C31.477 (2)C8—C111.440 (2)
C3—H3A0.9600C9—C101.377 (2)
C3—H3B0.9600C9—H90.9300
C3—H3C0.9600C10—H100.9300
C4—N41.266 (2)C11—N51.137 (2)
C4—C51.4735 (19)N1—N41.3815 (16)
C4—H40.9300N2—N31.371 (2)
C5—C61.384 (2)N3—H3D0.8600
C5—C101.391 (2)
N3—C1—N1101.52 (13)C8—C7—C6119.51 (17)
N3—C1—S1127.16 (12)C8—C7—H7120.2
N1—C1—S1131.32 (11)C6—C7—H7120.2
N2—C2—N1110.55 (15)C7—C8—C9120.50 (15)
N2—C2—C3126.08 (16)C7—C8—C11120.31 (18)
N1—C2—C3123.37 (15)C9—C8—C11119.20 (18)
C2—C3—H3A109.5C10—C9—C8119.79 (17)
C2—C3—H3B109.5C10—C9—H9120.1
H3A—C3—H3B109.5C8—C9—H9120.1
C2—C3—H3C109.5C9—C10—C5120.33 (16)
H3A—C3—H3C109.5C9—C10—H10119.8
H3B—C3—H3C109.5C5—C10—H10119.8
N4—C4—C5117.83 (15)N5—C11—C8179.2 (2)
N4—C4—H4121.1N4—N1—C2118.04 (13)
C5—C4—H4121.1N4—N1—C1133.14 (13)
C6—C5—C10119.33 (14)C2—N1—C1108.80 (13)
C6—C5—C4119.41 (15)C2—N2—N3104.07 (13)
C10—C5—C4121.26 (14)C1—N3—N2115.04 (13)
C7—C6—C5120.52 (17)C1—N3—H3D122.5
C7—C6—H6119.7N2—N3—H3D122.5
C5—C6—H6119.7C4—N4—N1120.55 (13)
N4—C4—C5—C6−176.05 (15)C3—C2—N1—N42.8 (2)
N4—C4—C5—C104.7 (2)N2—C2—N1—C11.31 (19)
C10—C5—C6—C7−0.9 (3)C3—C2—N1—C1−178.55 (17)
C4—C5—C6—C7179.80 (16)N3—C1—N1—N4177.34 (15)
C5—C6—C7—C81.3 (3)S1—C1—N1—N4−3.4 (3)
C6—C7—C8—C9−0.7 (3)N3—C1—N1—C2−0.99 (17)
C6—C7—C8—C11178.86 (17)S1—C1—N1—C2178.25 (13)
C7—C8—C9—C10−0.3 (3)N1—C2—N2—N3−0.99 (19)
C11—C8—C9—C10−179.81 (17)C3—C2—N2—N3178.87 (18)
C8—C9—C10—C50.6 (3)N1—C1—N3—N20.42 (19)
C6—C5—C10—C9−0.1 (3)S1—C1—N3—N2−178.87 (13)
C4—C5—C10—C9179.22 (16)C2—N2—N3—C10.3 (2)
C7—C8—C11—N5−176 (100)C5—C4—N4—N1−177.73 (12)
C9—C8—C11—N54(17)C2—N1—N4—C4172.61 (15)
N2—C2—N1—N4−177.30 (14)C1—N1—N4—C4−5.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3D···N5i0.862.112.934 (2)162

Symmetry codes: (i) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2041).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Awad, I., Abdel-Rahman, A. & Bakite, E. (1991). J. Chem. Technol. Biotechnol.51, 483–486.
  • Eweiss, N., Bahajaj, A. & Elsherbini, E. (1986). J. Heterocycl. Chem.23, 1451–1458.
  • Grasso, S. A. (1988). Farm. Ed. Sci.43, 851–854.
  • Pillard, D. A., Cornell, J. S., Dufresne, D. L. & Hernandez, M. T. (2001). Water Res.35, 557–560. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sharma, R. S. & Bahel, S. C. (1982). J. Indian Chem. Soc.59, 877–879.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography