PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m929.
Published online 2008 June 19. doi:  10.1107/S1600536808016073
PMCID: PMC2961769

catena-Poly[[aqua­{4-[N′-(2,4-dioxo-3-pentyl­idene)­hydrazino]­benzoato}­copper(II)]-μ-acetato]

Abstract

In the title compound, [Cu(CH3CO2)(C12H11N2O4)(H2O)]n, the CuII cation is tetra­coordinated by three carboxyl­ate O atoms from one 4-[N′-(2,4-dioxo-3-pentyl­idene)­hydrazino]­benzoate ligand and two acetate bridges, and by one water mol­ecule. The acetate bridges link adjacent CuII cations, forming a chain. The crystal structure involves O—H(...)O hydrogen bonds.

Related literature

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959 [triangle]). For uses in biological systems, see: Chung et al. (1971 [triangle]); Okabe & Oya (2000 [triangle]); Serre et al. (2005 [triangle]); Pocker & Fong (1980 [triangle]); Scapin et al. (1997 [triangle]); Kim et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m929-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O2)(C12H11N2O4)(H2O)]
  • M r = 387.83
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m929-efi2.jpg
  • a = 8.106 (2) Å
  • b = 23.918 (4) Å
  • c = 8.946 (2) Å
  • β = 106.90 (3)°
  • V = 1659.5 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.35 mm−1
  • T = 293 (2) K
  • 0.43 × 0.28 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.594, T max = 0.755
  • 8654 measured reflections
  • 4235 independent reflections
  • 2693 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.219
  • S = 1.00
  • 4235 reflections
  • 226 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.94 e Å−3
  • Δρmin = −1.73 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016073/cf2197sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016073/cf2197Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

supplementary crystallographic information

Comment

In recent years, carboxylates have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). For example, Kim et al. (2001) focused on the syntheses of transition metal complexes containing benzenecarboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using sodium 4-(2-(diacetylmethylene)hydrazino)benzoate as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound. The asymmetric unit of the title compound is shown in Fig. 1. The copper(II) cation is tetracoordinated by three carboxylate oxygen atoms from one 2,4-dioxo-3-pentylidene)hydrazino]benzoate ligand and two acetate bridges, and by one water molecule. The acetate bridges link adjacent copper(II) cations, forming a chain, shown in Fig. 2. The Cu—O bond distances are in the range 1.970 (4)–2.031 (4) Å. The packing involves O—H···O hydrogen bonds, with O···O in the range 2.744 (5)–3.058 (6) Å, as shown in Fig. 3.

Experimental

A mixture of copper(II) acetate (0.5 mmol), 4-(2-(diacetylmethylene)hydrazino)benzoic acid (0.5 mmol), water (8 ml) and ethanol (8 ml) in a 25 ml Teflon-lined stainless steel autoclave was kept at 413 K for three days. Colorless crystals were obtained after cooling to room temperature with a yield of 27%. Anal. Calc. for C14H15CuN2O7: C 43.43, H 3.88, N 7.24%; Found: C 43.36, H 3.79, N 7.16%.

Refinement

The H atoms of the water molecule were located in a difference density map and were refined with distance restraints H···H = 1.38 (1) Å, O—H = 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(O). The N-bound H atom was also located in a map, and was refined with no positional restraints and with Uiso(H) = 1.2Ueq(N). All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A segment of the polymeric structure of (I), showing the atomic numbering scheme and 30% probability displacement ellipsoids. [Symmetry code: (I), x, 3/2 - y, z - 1/2.]
Fig. 2.
One-dimensional chain of (I).
Fig. 3.
The packing of (I), with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C2H3O2)(C12H11N2O4)(H2O)]F000 = 796
Mr = 387.83Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4235 reflections
a = 8.106 (2) Åθ = 1.7–28.8º
b = 23.918 (4) ŵ = 1.35 mm1
c = 8.946 (2) ÅT = 293 (2) K
β = 106.90 (3)ºBlock, blue
V = 1659.5 (6) Å30.43 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer4235 independent reflections
Radiation source: fine-focus sealed tube2693 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 293(2) Kθmax = 28.8º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −10→9
Tmin = 0.594, Tmax = 0.755k = −31→29
8654 measured reflectionsl = −8→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219  w = 1/[σ2(Fo2) + (0.167P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4235 reflectionsΔρmax = 0.94 e Å3
226 parametersΔρmin = −1.73 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu1−0.04150 (6)0.25987 (2)0.28607 (6)0.0311 (2)
C1−0.2534 (6)0.28239 (16)−0.0029 (5)0.0339 (8)
C2−0.4039 (6)0.2997 (2)−0.1400 (5)0.0490 (11)
H2A−0.37760.2918−0.23580.073*
H2B−0.42450.3390−0.13370.073*
H2C−0.50490.2793−0.13750.073*
C30.1783 (5)0.33727 (16)0.4174 (5)0.0340 (8)
C40.3381 (5)0.37225 (15)0.4810 (4)0.0290 (8)
C50.4965 (5)0.36320 (16)0.4439 (5)0.0326 (8)
H5A0.50360.33400.37730.039*
C60.6407 (5)0.39724 (16)0.5056 (5)0.0331 (8)
H6A0.74230.39120.47960.040*
C70.6292 (5)0.43991 (15)0.6058 (4)0.0299 (8)
C80.4760 (5)0.44926 (16)0.6466 (5)0.0333 (8)
H8A0.47120.47780.71580.040*
C90.3298 (5)0.41525 (16)0.5824 (5)0.0332 (8)
H9A0.22830.42170.60820.040*
C100.9194 (5)0.54195 (16)0.8363 (4)0.0281 (7)
C111.0841 (5)0.53851 (17)0.7897 (5)0.0346 (8)
C120.8959 (5)0.58020 (16)0.9595 (5)0.0339 (8)
C130.7155 (6)0.5879 (3)0.9759 (7)0.0562 (14)
H13A0.72010.61331.06000.084*
H13B0.67200.55240.99780.084*
H13C0.64090.60270.88040.084*
C141.2423 (6)0.5712 (2)0.8705 (6)0.0480 (11)
H14A1.33190.56310.82330.072*
H14B1.28010.56100.97900.072*
H14C1.21640.61040.86120.072*
N10.7769 (4)0.47437 (13)0.6639 (4)0.0306 (7)
H10.872 (6)0.471 (2)0.625 (5)0.037*
N20.7779 (4)0.51093 (13)0.7725 (4)0.0307 (7)
O11.0199 (4)0.60409 (14)1.0486 (4)0.0493 (8)
O21.0905 (4)0.50681 (17)0.6823 (5)0.0599 (11)
O30.1881 (4)0.29684 (14)0.3292 (4)0.0511 (8)
O40.0403 (4)0.34837 (14)0.4497 (4)0.0456 (8)
O5−0.2621 (4)0.28883 (13)0.1365 (3)0.0411 (7)
O6−0.1154 (5)0.26235 (12)−0.0240 (4)0.0424 (8)
O70.0168 (6)0.18300 (14)0.2414 (4)0.0566 (10)
H7A0.019 (8)0.1569 (15)0.305 (5)0.068*
H7B0.056 (7)0.172 (2)0.169 (4)0.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0339 (4)0.0265 (3)0.0328 (4)−0.00674 (17)0.0093 (2)−0.00117 (17)
C10.046 (2)0.0210 (17)0.033 (2)0.0006 (15)0.0104 (18)−0.0006 (15)
C20.051 (3)0.052 (3)0.038 (2)0.014 (2)0.005 (2)0.001 (2)
C30.040 (2)0.0279 (19)0.031 (2)−0.0096 (15)0.0056 (17)0.0025 (15)
C40.0317 (18)0.0214 (16)0.0314 (19)−0.0037 (13)0.0054 (15)0.0024 (14)
C50.038 (2)0.0241 (17)0.034 (2)−0.0007 (15)0.0091 (16)−0.0046 (15)
C60.034 (2)0.0295 (19)0.037 (2)0.0014 (15)0.0118 (17)−0.0041 (16)
C70.034 (2)0.0225 (17)0.031 (2)−0.0020 (14)0.0057 (16)0.0002 (14)
C80.034 (2)0.0267 (18)0.038 (2)−0.0027 (14)0.0083 (17)−0.0081 (15)
C90.033 (2)0.0284 (19)0.040 (2)−0.0043 (15)0.0126 (17)−0.0059 (16)
C100.0255 (17)0.0255 (17)0.0309 (19)−0.0021 (13)0.0044 (15)−0.0037 (14)
C110.0299 (19)0.0279 (18)0.044 (2)0.0012 (15)0.0082 (17)−0.0040 (17)
C120.034 (2)0.0268 (18)0.040 (2)0.0015 (15)0.0088 (17)−0.0029 (16)
C130.040 (3)0.073 (4)0.057 (3)−0.001 (2)0.016 (2)−0.027 (3)
C140.037 (2)0.046 (3)0.062 (3)−0.0148 (19)0.017 (2)−0.017 (2)
N10.0272 (15)0.0255 (15)0.0365 (18)−0.0016 (12)0.0054 (14)−0.0046 (13)
N20.0315 (16)0.0253 (15)0.0326 (17)−0.0011 (12)0.0052 (14)−0.0024 (13)
O10.0426 (17)0.0464 (18)0.057 (2)−0.0065 (14)0.0121 (15)−0.0261 (16)
O20.0423 (18)0.064 (2)0.079 (3)−0.0128 (17)0.0269 (19)−0.042 (2)
O30.0478 (19)0.0438 (18)0.061 (2)−0.0139 (15)0.0139 (16)−0.0174 (16)
O40.0409 (18)0.0461 (17)0.0514 (19)−0.0123 (13)0.0162 (15)−0.0021 (15)
O50.0487 (18)0.0426 (17)0.0334 (16)0.0028 (14)0.0141 (14)−0.0007 (13)
O60.0505 (19)0.0400 (17)0.0382 (18)0.0109 (13)0.0152 (15)0.0012 (13)
O70.105 (3)0.0278 (17)0.047 (2)0.0048 (17)0.037 (2)0.0062 (14)

Geometric parameters (Å, °)

Cu1—O71.968 (4)C8—C91.415 (5)
Cu1—O31.994 (3)C8—H8A0.9300
Cu1—O52.020 (3)C9—H9A0.9300
Cu1—O6i2.030 (3)C10—N21.346 (5)
C1—O61.281 (5)C10—C121.486 (5)
C1—O51.278 (5)C10—C111.513 (5)
C1—C21.515 (6)C11—O21.236 (5)
C2—H2A0.9600C11—C141.496 (6)
C2—H2B0.9600C12—O11.228 (5)
C2—H2C0.9600C12—C131.522 (6)
C3—O41.262 (5)C13—H13A0.9600
C3—O31.265 (5)C13—H13B0.9600
C3—C41.508 (5)C13—H13C0.9600
C4—C91.386 (5)C14—H14A0.9600
C4—C51.433 (5)C14—H14B0.9600
C5—C61.400 (5)C14—H14C0.9600
C5—H5A0.9300N1—N21.305 (4)
C6—C71.379 (5)N1—H10.94 (5)
C6—H6A0.9300O6—Cu1ii2.030 (3)
C7—C81.410 (5)O7—H7A0.84 (4)
C7—N11.422 (5)O7—H7B0.84 (5)
O7—Cu1—O3100.84 (16)C4—C9—H9A120.1
O7—Cu1—O5113.86 (16)C8—C9—H9A120.1
O3—Cu1—O5124.96 (15)N2—C10—C12112.1 (3)
O7—Cu1—O6i94.12 (13)N2—C10—C11124.4 (3)
O3—Cu1—O6i116.10 (15)C12—C10—C11123.5 (3)
O5—Cu1—O6i102.99 (13)O2—C11—C14118.2 (4)
O6—C1—O5119.2 (4)O2—C11—C10119.1 (4)
O6—C1—C2121.0 (4)C14—C11—C10122.7 (4)
O5—C1—C2119.8 (4)O1—C12—C10120.7 (4)
C1—C2—H2A109.5O1—C12—C13120.6 (4)
C1—C2—H2B109.5C10—C12—C13118.7 (4)
H2A—C2—H2B109.5C12—C13—H13A109.4
C1—C2—H2C109.5C12—C13—H13B109.5
H2A—C2—H2C109.5H13A—C13—H13B109.5
H2B—C2—H2C109.5C12—C13—H13C109.5
O4—C3—O3121.6 (4)H13A—C13—H13C109.5
O4—C3—C4121.2 (4)H13B—C13—H13C109.5
O3—C3—C4117.2 (4)C11—C14—H14A109.4
C9—C4—C5118.7 (3)C11—C14—H14B109.5
C9—C4—C3117.3 (3)H14A—C14—H14B109.5
C5—C4—C3123.9 (3)C11—C14—H14C109.5
C6—C5—C4121.5 (3)H14A—C14—H14C109.5
C6—C5—H5A119.2H14B—C14—H14C109.5
C4—C5—H5A119.2N2—N1—C7118.9 (3)
C7—C6—C5118.7 (3)N2—N1—H1120 (3)
C7—C6—H6A120.7C7—N1—H1121 (3)
C5—C6—H6A120.6N1—N2—C10120.3 (3)
C6—C7—C8121.1 (4)C3—O3—Cu1103.6 (3)
C6—C7—N1117.2 (3)C1—O5—Cu1108.4 (3)
C8—C7—N1121.6 (3)C1—O6—Cu1ii134.8 (3)
C7—C8—C9120.0 (4)Cu1—O7—H7A121 (3)
C7—C8—H8A120.0Cu1—O7—H7B127 (3)
C9—C8—H8A120.0H7A—O7—H7B110.9 (18)
C4—C9—C8119.9 (3)
O4—C3—C4—C93.1 (6)N2—C10—C12—C13−11.4 (6)
O3—C3—C4—C9−177.6 (4)C11—C10—C12—C13168.9 (4)
O4—C3—C4—C5−177.5 (4)C6—C7—N1—N2−172.2 (4)
O3—C3—C4—C51.8 (6)C8—C7—N1—N28.7 (5)
C9—C4—C5—C6−1.1 (6)C7—N1—N2—C10176.2 (3)
C3—C4—C5—C6179.6 (4)C12—C10—N2—N1−178.9 (3)
C4—C5—C6—C70.8 (6)C11—C10—N2—N10.8 (6)
C5—C6—C7—C80.3 (6)O4—C3—O3—Cu1−4.6 (5)
C5—C6—C7—N1−178.8 (4)C4—C3—O3—Cu1176.2 (3)
C6—C7—C8—C9−1.2 (6)O7—Cu1—O3—C3−154.1 (3)
N1—C7—C8—C9177.9 (4)O5—Cu1—O3—C376.3 (3)
C5—C4—C9—C80.2 (6)O6i—Cu1—O3—C3−54.0 (3)
C3—C4—C9—C8179.6 (4)O6—C1—O5—Cu1−2.5 (4)
C7—C8—C9—C40.9 (6)C2—C1—O5—Cu1178.9 (3)
N2—C10—C11—O22.7 (6)O7—Cu1—O5—C1−53.0 (3)
C12—C10—C11—O2−177.6 (4)O3—Cu1—O5—C171.1 (3)
N2—C10—C11—C14−176.0 (4)O6i—Cu1—O5—C1−153.5 (3)
C12—C10—C11—C143.7 (6)O5—C1—O6—Cu1ii175.8 (3)
N2—C10—C12—O1166.9 (4)C2—C1—O6—Cu1ii−5.7 (6)
C11—C10—C12—O1−12.8 (6)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.94 (5)1.90 (5)2.617 (5)132 (4)
O7—H7A···O1iii0.84 (4)1.91 (4)2.739 (4)168 (5)
O7—H7B···O4ii0.84 (5)2.00 (3)2.774 (5)153 (6)

Symmetry codes: (iii) −x+1, y−1/2, −z+3/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2197).

References

  • Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chung, L., Rajan, K. S., Merdinger, E. & Grecz, N. (1971). Biophys. J.11, 469–482. [PubMed]
  • Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125. [PubMed]
  • Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater.13, 2684–2690.
  • Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417. [PubMed]
  • Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 19, 2045–2049. [PubMed]
  • Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15088. [PubMed]
  • Serre, C., Marrot, J. & Férey, G. (2005). Inorg. Chem.44, 654–658. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography