PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m865–m866.
Published online 2008 June 7. doi:  10.1107/S1600536808015894
PMCID: PMC2961767

catena-Poly[[[diaqua­nickel(II)]-di-μ-glycine] dichloride]

Abstract

In the polymeric title complex, {[Ni(C2H5NO2)2(H2O)2]Cl2}n, the NiII atom lies on an inversion center and is in a distorted octa­hedral NiO6 configuration, with four carboxyl­ate O atoms from four zwitterionic glycine mol­ecules forming the equatorial plane and two water O atoms occupying the axial positions. The Cl counterions lie in the inter­stices. The NiII complexes are linked into polymeric sheets parallel to the bc plane. These sheets are then further connected into a three-dimensional network by O—H(...)O, O—H(...)Cl and N—H(...)Cl hydrogen bonds, together with weak C—H(...)O inter­actions.

Related literature

For values of bond lengths and angles, see: Allen et al. (1987 [triangle]); Shannon (1976 [triangle]). For related structures, see, for example: Fleck & Bohatý (2005 [triangle]). For background to the application of nickel complexes, see, for example: Ferrari et al. (2002 [triangle]); Kasuga et al. (2001 [triangle]); Lancaster (1998 [triangle]); Matkar et al. (2006 [triangle]); Liang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m865-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H5NO2)2(H2O)2]Cl2
  • M r = 315.76
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m865-efi5.jpg
  • a = 10.6006 (1) Å
  • b = 5.8579 (1) Å
  • c = 8.7113 (1) Å
  • β = 90.489 (1)°
  • V = 540.93 (1) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.30 mm−1
  • T = 100.0 (1) K
  • 0.32 × 0.22 × 0.12 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.530, T max = 0.775
  • 11049 measured reflections
  • 2372 independent reflections
  • 2079 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.056
  • S = 1.06
  • 2372 reflections
  • 98 parameters
  • All H-atom parameters refined
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015894/sj2507sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015894/sj2507Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for a SAGA Grant from the Academy of Science, Malaysia, and an FRGS Grant from the Ministry of Higher Education (MOHE), Malaysia, for funding this research. The authors also thank the Universiti Sains Malaysia for a Research University Golden Goose Grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

Nickel plays versatile and sometimes controversial roles in living systems as the biological effects of nickel are closely related to their chemical nature (Lancaster, 1998). Nickel complexes have been the subject of intense study in recent years mostly due to their biological significance such as antitumor and antibacterial activities (Matkar et al., 2006, Kasuga et al., 2001). Several nickel complexes have been found to inhibit proliferation of diverse cancer cells (Ferrari et al., 2002; Liang et al., 2004, Matkar et al., 2006). Based on the significant biological role played by nickel complexes, we have synthesized several nickel complexes and herein, we report the preparation and crystal structure of the title complex which is isomorphous with catena-poly[[[diaquanickel(II)]-di-µ- glycine] dibromide] (Fleck & Bohatý, 2005).

In the molecular structure of the polymeric title complex, {[Ni(C2H5NO2)2(H2O)2]Cl2}n (Fig. 1), the NiII lies on an inversion center and has an NiO6 coordination environment. The coordination sphere of the NiII ion is a slightly distorted octahedron consisting of the O4 coordination plane of the four glycine zwitterions (coordinating through one carboxylic O atom from each glycine zwitterion) and the two axially bound water molecules. The Ni—O(glycine) distances [Ni1—O1 = 2.0398 (7) Å and Ni1—O2 = 2.0753 (7) Å] and Ni—O(water) distances [2.0413 (8) Å] are quite similar to those observed in another closely related NiII complex which are in the range 2.033 (2)–2.086 (2) Å (Fleck & Bohatý, 2005) and are also similar to the Ni—O distances observed in ionic compounds (Shannon, 1976). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). In the glycine zwitterion, the carboxylate group is slightly twisted from the C1/C2/N1 plane with torsion angles O2—C1—C2—N1 = 167.23 (9)° and O1—C1—C2—N1 - 14.75 (14)°. The C—O distances [C1—O1 = 1.2601 (12) Å and C1—O2 = 1.2524 (12) Å] show some electron delocalization over the carboxylate group. The Cl- ions lie in the interstices between the glycine zwitterions.

The crystal packing in Fig. 2 has shown the polymeric structure of the title polymeric complex. The NiII complex molecules are linked by O—H···O (Table 1) into polymeric sheets along the [010] direction (Fig. 3). These sheets are furthered connect to the interstial Cl- ions by O—H···Cl and N—H···Cl hydrogen bonds to the water molecules and amino groups, respectively forming a three-dimensional network (Table 1). The crystal is stabilized by O—H···O, O—H···Cl and N—H···Cl hydrogen bonds, together with weak C—H···Cl interactions (Table 1).

Experimental

The title complex was synthesized by heating under reflux a 1:2 molar mixture of nickel(II) chloride hexahydrate, NiCl2.6H2O (0.2377 g, 1 mmol) and glycine (0.1503 g, 2 mmol) in water (30 ml) for 3 h. A green transparent solution was obtained and allowed to cool to room temperature. Green single crystals of the title complex suitable for X-ray structure determination were obtained after a few days of evaporation. Mp. 442–443 K.

Refinement

H atoms were located in difference maps and refined isotropically. The highest residual electron density peak is located at 1.74 Å from O1W and the deepest hole is located at 0.72 Å from Ni1.

Figures

Fig. 1.
The structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Symmetry codes for the (A) -x, -1/2 + y, -1/2 - z, (B) -x, 1/2 + y, -1/2 - z and (C) -x, -y, -z.
Fig. 2.
The crystal packing of (I), viewed along the a axis showing the polymeric structure. Hydrogen bonds are drawn as dashed lines.
Fig. 3.
The crystal packing of (I), viewed along the c axis showing the sheets running along the [010] direction. Hydrogen bonds are drawn as dashed lines.

Crystal data

[Ni(C2H5NO2)2(H2O)2]Cl2F000 = 324
Mr = 315.76Dx = 1.939 Mg m3
Monoclinic, P21/cMelting point = 442–443 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 10.6006 (1) ÅCell parameters from 2372 reflections
b = 5.8579 (1) Åθ = 3.8–34.9º
c = 8.7113 (1) ŵ = 2.30 mm1
β = 90.489 (1)ºT = 100.0 (1) K
V = 540.928 (12) Å3Block, green
Z = 20.32 × 0.22 × 0.12 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer2372 independent reflections
Radiation source: fine-focus sealed tube2079 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
Detector resolution: 8.33 pixels mm-1θmax = 35.0º
T = 100.0(1) Kθmin = 3.8º
ω scansh = −17→17
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −8→9
Tmin = 0.530, Tmax = 0.775l = −14→14
11049 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.056  w = 1/[σ2(Fo2) + (0.0259P)2 + 0.1363P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2372 reflectionsΔρmax = 0.49 e Å3
98 parametersΔρmin = −0.68 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.00000.00000.00000.00637 (5)
Cl10.38948 (2)−0.28198 (5)−0.05133 (3)0.01159 (6)
O10.14915 (7)0.13388 (13)−0.11588 (8)0.00907 (13)
O20.04973 (7)0.34293 (14)−0.29470 (8)0.01009 (14)
N10.37953 (8)0.22021 (18)−0.21419 (11)0.00996 (16)
C10.14619 (9)0.25515 (18)−0.23533 (11)0.00790 (16)
C20.27217 (9)0.2880 (2)−0.31479 (12)0.01036 (18)
O1W0.10514 (8)−0.28293 (15)0.04954 (9)0.01166 (15)
H2A0.2839 (16)0.444 (3)−0.345 (2)0.017 (4)*
H2B0.2718 (16)0.195 (3)−0.4024 (19)0.018 (4)*
H1N10.4466 (17)0.204 (3)−0.2731 (19)0.020 (4)*
H2N10.3641 (15)0.088 (3)−0.1668 (19)0.015 (4)*
H3N10.3947 (17)0.323 (3)−0.142 (2)0.025 (5)*
H1W10.087 (2)−0.324 (4)0.139 (2)0.038 (6)*
H2W10.180 (2)−0.284 (3)0.032 (2)0.032 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.00560 (8)0.00757 (9)0.00594 (8)−0.00004 (6)0.00067 (5)0.00022 (6)
Cl10.00941 (10)0.01139 (12)0.01402 (11)0.00140 (8)0.00280 (8)0.00077 (8)
O10.0083 (3)0.0107 (4)0.0082 (3)−0.0006 (3)0.0007 (2)0.0023 (2)
O20.0085 (3)0.0132 (4)0.0086 (3)0.0018 (3)0.0000 (2)0.0022 (3)
N10.0075 (3)0.0121 (4)0.0103 (4)−0.0001 (3)0.0009 (3)0.0021 (3)
C10.0079 (4)0.0085 (4)0.0074 (4)−0.0009 (3)0.0011 (3)−0.0007 (3)
C20.0071 (4)0.0145 (5)0.0095 (4)0.0000 (3)0.0007 (3)0.0033 (3)
O1W0.0089 (3)0.0129 (4)0.0133 (3)0.0023 (3)0.0028 (3)0.0027 (3)

Geometric parameters (Å, °)

Ni1—O1i2.0398 (7)N1—C21.4845 (14)
Ni1—O12.0399 (7)N1—H1N10.885 (18)
Ni1—O1Wi2.0413 (8)N1—H2N10.893 (18)
Ni1—O1W2.0414 (8)N1—H3N10.884 (19)
Ni1—O2ii2.0753 (7)C1—C21.5217 (14)
Ni1—O2iii2.0753 (7)C2—H2A0.959 (18)
O1—C11.2601 (12)C2—H2B0.939 (17)
O2—C11.2524 (12)O1W—H1W10.84 (2)
O2—Ni1iv2.0753 (7)O1W—H2W10.81 (2)
O1i—Ni1—O1180.0C2—N1—H2N1111.2 (11)
O1i—Ni1—O1Wi89.58 (3)H1N1—N1—H2N1109.0 (15)
O1—Ni1—O1Wi90.42 (3)C2—N1—H3N1111.7 (12)
O1i—Ni1—O1W90.42 (3)H1N1—N1—H3N1110.1 (16)
O1—Ni1—O1W89.58 (3)H2N1—N1—H3N1107.3 (16)
O1Wi—Ni1—O1W180.0O2—C1—O1125.94 (9)
O1i—Ni1—O2ii86.34 (3)O2—C1—C2118.48 (9)
O1—Ni1—O2ii93.66 (3)O1—C1—C2115.54 (9)
O1Wi—Ni1—O2ii87.50 (3)N1—C2—C1111.66 (8)
O1W—Ni1—O2ii92.50 (3)N1—C2—H2A108.4 (10)
O1i—Ni1—O2iii93.66 (3)C1—C2—H2A111.2 (10)
O1—Ni1—O2iii86.34 (3)N1—C2—H2B108.8 (10)
O1Wi—Ni1—O2iii92.50 (3)C1—C2—H2B107.4 (10)
O1W—Ni1—O2iii87.50 (3)H2A—C2—H2B109.4 (14)
O2ii—Ni1—O2iii180.0Ni1—O1W—H1W1107.7 (15)
C1—O1—Ni1127.70 (7)Ni1—O1W—H2W1120.0 (14)
C1—O2—Ni1iv137.59 (7)H1W1—O1W—H2W1114 (2)
C2—N1—H1N1107.6 (11)
O1Wi—Ni1—O1—C1−35.21 (9)Ni1iv—O2—C1—C210.54 (16)
O1W—Ni1—O1—C1144.79 (9)Ni1—O1—C1—O210.33 (16)
O2ii—Ni1—O1—C1−122.74 (9)Ni1—O1—C1—C2−167.51 (7)
O2iii—Ni1—O1—C157.26 (9)O2—C1—C2—N1167.23 (9)
Ni1iv—O2—C1—O1−167.25 (8)O1—C1—C2—N1−14.75 (14)

Symmetry codes: (i) −x, −y, −z; (ii) x, −y+1/2, z+1/2; (iii) −x, y−1/2, −z−1/2; (iv) −x, y+1/2, −z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl1v0.886 (18)2.326 (17)3.2021 (9)170.2 (15)
N1—H2N1···Cl10.893 (17)2.404 (17)3.2673 (11)162.7 (14)
N1—H3N1···Cl1vi0.884 (18)2.446 (18)3.2442 (11)150.4 (15)
O1W—H1W1···O2vii0.840 (18)2.00 (2)2.7276 (11)145 (2)
O1W—H2W1···Cl10.81 (2)2.34 (2)3.1468 (9)172.8 (17)
C2—H2B···O1viii0.938 (17)2.472 (17)2.9549 (13)112.0 (13)

Symmetry codes: (v) −x+1, y+1/2, −z−1/2; (vi) x, y+1, z; (vii) −x, −y, −z; (viii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2507).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ferrari, M. B., Bisceglie, F., Pelosi, G., Sassi, M., Tarasconi, P., Cornia, M., Capacchi, S., Albertini, R. & Pinelli, S. (2002). J. Inorg. Biochem.90, 113–126. [PubMed]
  • Fleck, M. & Bohatý, L. (2005). Acta Cryst. C61, m412–m416. [PubMed]
  • Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem.98, 55–65. [PubMed]
  • Lancaster, J. P. (1998). Editor. The Bioinorganic Chemistry of Nickel New York: VCH.
  • Liang, F., Wang, P., Zhou, X., Li, T., Li, Z.-Y., Lin, H.-K., Gao, D.-Z., Zheng, C.-Y. & Wu, C.-T. (2004). Bioorg. Med. Chem. Lett.14, 1901–1904. [PubMed]
  • Matkar, S. S., Wrischnik, L. A., Jones, P. R. & Blumberg, U. H. (2006). Biochem. Biophys. Res. Commun.343, 754–761. [PubMed]
  • Shannon, R. D. (1976). Acta Cryst. A32, 751–767.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography