PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1335.
Published online 2008 June 25. doi:  10.1107/S1600536808018680
PMCID: PMC2961763

4,4′-[Propane-1,3-diylbis(nitrilo­methyl­idyne)]dibenzonitrile

Abstract

The mol­ecule of the title Schiff base compound, C19H16N4, has crystallographic twofold rotation symmetry. The imino group is coplanar with the aromatic ring. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the central methyl­ene bridge. The packing of the mol­ecules is controlled by C—H(...)π inter­actions.

Related literature

For values of bond lengths, see Allen et al. (1987 [triangle]). For related structures, see: Li et al. (2005 [triangle]); Bomfim et al. (2005 [triangle]); Glidewell et al. (2005 [triangle], 2006 [triangle]); Sun et al. (2004 [triangle]); Habibi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1335-scheme1.jpg

Experimental

Crystal data

  • C19H16N4
  • M r = 300.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1335-efi1.jpg
  • a = 14.4982 (4) Å
  • b = 6.9025 (2) Å
  • c = 16.9842 (6) Å
  • β = 111.659 (4)°
  • V = 1579.67 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 100.0 (1) K
  • 0.37 × 0.12 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.886, T max = 0.991
  • 13317 measured reflections
  • 1544 independent reflections
  • 1257 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.127
  • S = 1.17
  • 1544 reflections
  • 109 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018680/tk2276sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018680/tk2276Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound, (I), are known (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Habibi et al., 2007).

The molecule of (I), Fig. 1, has a crystallographic 2-fold symmetry. The bond lengths and angles are within normal ranges (Allen et al., 1987). The group is coplanar with the aromatic ring in each half of the molecule. The planar units are parallel by symmetry, but extend in opposite directions from the central methylene bridge, the C6—C7—N1—C8 torsion angle is 178.9 (3)°. The packing of the molecules, Fig. 2, is controlled by C—H···π interactions, Table 1.

Experimental

A solution of 1,3-propanediamine (0.1 mmol, 0.074 g) was slowly added to a solution of 4-cyanobenzaldehyde (0.2 mmol, 0.026 g) in chloroform (30 ml). Recrystallization of the resulting solid from ethanol afforded colourless crystals of (I).

Refinement

The C9-bound H atom was located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically with C—H = 0.93 Å (aromatic and methine) or 0.97 Å (CH2), and refined in the riding mode approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing atom labeling and 50% probability ellipsoids [symmetry code for i: -x, y, 0.5 - z].
Fig. 2.
A view down the b-axis of the unit cell contents for (I), highlighting the parallel arrangement of the molecules.

Crystal data

C19H16N4F000 = 632
Mr = 300.36Dx = 1.263 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2928 reflections
a = 14.4982 (4) Åθ = 3.0–30.0º
b = 6.9025 (2) ŵ = 0.08 mm1
c = 16.9842 (6) ÅT = 100.0 (1) K
β = 111.659 (4)ºNeedle, colourless
V = 1579.67 (8) Å30.37 × 0.12 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1544 independent reflections
Radiation source: fine-focus sealed tube1257 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.077
T = 100(1) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −17→17
Tmin = 0.886, Tmax = 0.991k = −8→8
13317 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0132P)2 + 5.0812P] where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
1544 reflectionsΔρmax = 0.18 e Å3
109 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.14554 (16)0.8098 (3)0.29318 (13)0.0173 (5)
N20.5053 (2)0.1024 (4)0.59762 (16)0.0373 (7)
C10.29164 (19)0.6045 (4)0.43213 (16)0.0193 (6)
H1A0.28690.73700.43970.023*
C20.3625 (2)0.4975 (4)0.49323 (16)0.0211 (6)
H2A0.40520.55740.54220.025*
C30.3701 (2)0.2986 (4)0.48155 (17)0.0192 (6)
C40.3064 (2)0.2085 (4)0.40896 (17)0.0203 (6)
H4A0.31160.07610.40120.024*
C50.23520 (19)0.3172 (4)0.34838 (17)0.0183 (6)
H5A0.19210.25700.29970.022*
C60.22689 (19)0.5159 (4)0.35906 (16)0.0161 (6)
C70.15182 (19)0.6273 (4)0.29081 (17)0.0183 (6)
H7A0.10770.56090.24460.022*
C80.06898 (19)0.9029 (4)0.22061 (16)0.0185 (6)
H8A0.03100.80470.18110.022*
H8B0.10020.98550.19150.022*
C90.00001.0233 (6)0.25000.0162 (8)
C100.4454 (2)0.1869 (4)0.54596 (18)0.0262 (7)
H9A0.0367 (18)1.110 (4)0.2938 (15)0.015 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0147 (12)0.0211 (13)0.0155 (11)0.0035 (10)0.0049 (9)0.0024 (10)
N20.0446 (17)0.0425 (17)0.0235 (14)0.0218 (15)0.0109 (13)0.0090 (13)
C10.0215 (15)0.0158 (14)0.0217 (14)0.0001 (12)0.0091 (12)−0.0019 (12)
C20.0220 (15)0.0242 (16)0.0142 (13)0.0027 (12)0.0034 (12)−0.0020 (12)
C30.0193 (14)0.0227 (15)0.0199 (14)0.0046 (12)0.0121 (12)0.0049 (12)
C40.0246 (15)0.0151 (14)0.0268 (15)0.0011 (12)0.0162 (13)0.0015 (12)
C50.0167 (14)0.0191 (15)0.0198 (14)−0.0056 (11)0.0075 (12)−0.0058 (11)
C60.0150 (14)0.0202 (15)0.0165 (13)0.0008 (11)0.0097 (11)0.0004 (11)
C70.0135 (14)0.0229 (16)0.0177 (14)−0.0030 (11)0.0048 (11)−0.0025 (11)
C80.0156 (13)0.0236 (15)0.0159 (13)0.0031 (12)0.0052 (11)0.0001 (12)
C90.0144 (19)0.015 (2)0.0174 (19)0.0000.0042 (16)0.000
C100.0330 (17)0.0270 (17)0.0206 (15)0.0072 (14)0.0123 (14)0.0013 (13)

Geometric parameters (Å, °)

N1—C71.264 (3)C4—H4A0.9300
N1—C81.468 (3)C5—C61.395 (4)
N2—C101.141 (4)C5—H5A0.9300
C1—C21.375 (4)C6—C71.479 (4)
C1—C61.391 (4)C7—H7A0.9300
C1—H1A0.9300C8—C91.519 (3)
C2—C31.398 (4)C8—H8A0.9700
C2—H2A0.9300C8—H8B0.9700
C3—C41.386 (4)C9—C8i1.519 (3)
C3—C101.450 (4)C9—H9A0.95 (3)
C4—C51.380 (4)
C7—N1—C8116.8 (2)C1—C6—C5119.1 (3)
C2—C1—C6120.5 (3)C1—C6—C7122.0 (2)
C2—C1—H1A119.7C5—C6—C7118.9 (2)
C6—C1—H1A119.7N1—C7—C6122.3 (3)
C1—C2—C3119.8 (3)N1—C7—H7A118.9
C1—C2—H2A120.1C6—C7—H7A118.9
C3—C2—H2A120.1N1—C8—C9110.43 (19)
C4—C3—C2120.4 (3)N1—C8—H8A109.6
C4—C3—C10120.1 (3)C9—C8—H8A109.6
C2—C3—C10119.5 (3)N1—C8—H8B109.6
C5—C4—C3119.3 (3)C9—C8—H8B109.6
C5—C4—H4A120.4H8A—C8—H8B108.1
C3—C4—H4A120.4C8—C9—C8i113.7 (3)
C4—C5—C6121.0 (3)C8—C9—H9A110.8 (15)
C4—C5—H5A119.5C8i—C9—H9A109.5 (15)
C6—C5—H5A119.5N2—C10—C3178.6 (4)
C6—C1—C2—C30.5 (4)C4—C5—C6—C7177.7 (2)
C1—C2—C3—C4−0.3 (4)C8—N1—C7—C6178.9 (2)
C1—C2—C3—C10179.6 (3)C1—C6—C7—N13.5 (4)
C2—C3—C4—C5−0.1 (4)C5—C6—C7—N1−174.2 (3)
C10—C3—C4—C5180.0 (3)C7—N1—C8—C9123.5 (3)
C3—C4—C5—C60.3 (4)N1—C8—C9—C8i−71.64 (19)
C2—C1—C6—C5−0.4 (4)C4—C3—C10—N2−179 (100)
C2—C1—C6—C7−178.0 (3)C2—C3—C10—N21(14)
C4—C5—C6—C1−0.1 (4)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8B···Cg1ii0.972.853.58133

Symmetry codes: (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2276).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o3551–o3553.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4. [PubMed]
  • Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, o2881.
  • Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography