PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1279.
Published online 2008 June 19. doi:  10.1107/S1600536808017583
PMCID: PMC2961760

N-(4-Chloro­phenyl­sulfon­yl)-2,2,2-tri­methyl­acetamide

Abstract

In the crystal structure of the title compound (N4CPSTMAA), C11H14ClNO3S, the conformations of the N—H and C=O bonds in the amide group are anti to each other, similar to those observed in N-phenyl­sulfonyl-2,2,2-trimethyl­acetamide (NPSTMAA) and 2,2,2-trimethyl-N-(4-methyl­phenyl­sulfon­yl)acetamide (N4MPSTMAA). The bond parameters in N4CPSTMAA are similar to those in NPSTMAA, N4MPSTMAA, N-aryl-2,2,2-trimethyl­acetamides and 4-chloro­benzene­sulfonamide. The –SNHCOC– unit including the amide group is essentially planar and makes a dihedral angle of 82.2 (1)° with the benzene ring, comparable to the values of 79.1 (1) and 71.2 (1)° in NPSTMAA and N4MPSTMAA, respectively. The mol­ecules in N4CPSTMAA are linked into a chain by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003 [triangle], 2007 [triangle], 2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1279-scheme1.jpg

Experimental

Crystal data

  • C11H14ClNO3S
  • M r = 275.74
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1279-efi1.jpg
  • a = 6.034 (2) Å
  • b = 10.695 (2) Å
  • c = 11.134 (2) Å
  • α = 67.13 (2)°
  • β = 79.76 (2)°
  • γ = 88.46 (2)°
  • V = 650.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 299 (2) K
  • 0.50 × 0.24 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.806, T max = 0.948
  • 7016 measured reflections
  • 2595 independent reflections
  • 1901 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.129
  • S = 1.10
  • 2595 reflections
  • 157 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017583/is2303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017583/is2303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the solid state geometries of N-(aryl)-sulfonamides and substituted amides, the structure of N-(4-chlorophenylsulfonyl)-2,2,2-trimethylacetamide (N4CPSTMAA) has been determined (Gowda et al., 2003, 2007, 2008a,b). The conformations of the N—H and C=O bonds of the SO2—NH—CO—C group in N4CPSTMAA are anti to each other (Fig. 1), similar to those observed in N-(phenylsulfonyl)-2,2,2-trimethylacetamide (NPSTMAA) and (4-methylphenylsulfonyl)-2,2,2-trimethylacetamide (N4MPSTMAA) (Gowda et al., 2008a,b). The bond parameters in N4CPSTMAA are similar to those in NPSTMAA, N4MPSTMAA, N-(aryl)-2,2,2-trimethylacetamides (Gowda et al., 2007) and 4-chlorobenzenesulfonamide (Gowda et al., 2003). The packing diagram of N4CPSTMAA molecules showing the hydrogen bonds N—H···O (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing 4-chlorobenzenesulfonamide with excess pivalyl chloride for about an hour on a water bath. The reaction mixture was cooled and poured into ice cold water. The resulting solid was separated, washed thoroughly with water and dissolved in warm sodium hydrogen carbonate solution. The title compound was precipitated by acidifying the filtered solution with glacial acetic acid. It was filtered, dried and recrystallized from ethanol. The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The N-bound H atom was located in a difference map and its positional parameters were refined, with Uiso(H) = 1.2Ueq(N). The refined N—H length is 0.82 (3) Å. The other H atoms were positioned with idealized geometry (C—H = 0.93–0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C11H14ClNO3SZ = 2
Mr = 275.74F000 = 288
Triclinic, P1Dx = 1.407 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.034 (2) ÅCell parameters from 2338 reflections
b = 10.695 (2) Åθ = 2.3–27.9º
c = 11.134 (2) ŵ = 0.45 mm1
α = 67.13 (2)ºT = 299 (2) K
β = 79.76 (2)ºLong needle, colourless
γ = 88.46 (2)º0.50 × 0.24 × 0.12 mm
V = 650.8 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer2595 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 299(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −6→7
Tmin = 0.807, Tmax = 0.948k = −13→13
7016 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129  w = 1/[σ2(Fo2) + (0.0498P)2 + 0.5579P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2595 reflectionsΔρmax = 0.24 e Å3
157 parametersΔρmin = −0.51 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3219 (4)0.2479 (2)0.6007 (2)0.0368 (5)
C20.2137 (4)0.3650 (2)0.5986 (2)0.0407 (6)
H20.08450.38890.56150.049*
C30.3008 (5)0.4452 (3)0.6522 (3)0.0477 (7)
H30.23150.52440.65090.057*
C40.4906 (5)0.4074 (3)0.7075 (3)0.0471 (6)
C50.5980 (5)0.2899 (3)0.7113 (3)0.0501 (7)
H50.72490.26500.75040.060*
C60.5129 (4)0.2108 (3)0.6559 (3)0.0461 (6)
H60.58410.13260.65580.055*
C70.0583 (4)−0.0409 (3)0.7704 (2)0.0394 (6)
C80.0948 (5)−0.1803 (3)0.8733 (2)0.0438 (6)
C90.0658 (8)−0.2896 (3)0.8210 (4)0.0875 (13)
H9A0.1730−0.27180.74080.105*
H9B−0.0842−0.28920.80320.105*
H9C0.0903−0.37680.88610.105*
C10−0.0751 (6)−0.2068 (4)1.0003 (3)0.0711 (10)
H10A−0.2252−0.20430.98210.085*
H10B−0.0538−0.13821.03330.085*
H10C−0.0535−0.29451.06540.085*
C110.3316 (6)−0.1784 (4)0.9012 (3)0.0791 (11)
H11A0.3474−0.10920.93440.095*
H11B0.4390−0.15950.82090.095*
H11C0.3583−0.26520.96610.095*
N10.1921 (4)−0.0075 (2)0.6461 (2)0.0408 (5)
H1N0.291 (5)−0.055 (3)0.630 (3)0.049*
O10.0027 (3)0.1924 (2)0.49806 (19)0.0521 (5)
O20.3885 (4)0.13680 (19)0.42621 (17)0.0554 (5)
O3−0.0693 (3)0.0397 (2)0.79256 (19)0.0574 (5)
Cl10.60248 (18)0.50755 (8)0.77505 (9)0.0778 (3)
S10.21651 (11)0.14675 (6)0.52882 (6)0.0413 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0414 (13)0.0260 (11)0.0349 (12)0.0021 (10)0.0005 (10)−0.0064 (9)
C20.0457 (14)0.0309 (12)0.0413 (13)0.0110 (10)−0.0078 (11)−0.0100 (10)
C30.0599 (17)0.0277 (12)0.0493 (15)0.0075 (11)−0.0035 (13)−0.0115 (11)
C40.0610 (17)0.0320 (12)0.0430 (14)−0.0069 (12)−0.0048 (12)−0.0102 (11)
C50.0442 (15)0.0409 (14)0.0579 (16)0.0037 (12)−0.0131 (13)−0.0099 (12)
C60.0426 (14)0.0328 (13)0.0581 (16)0.0096 (11)−0.0066 (12)−0.0144 (12)
C70.0418 (13)0.0422 (13)0.0349 (12)0.0025 (11)−0.0064 (10)−0.0163 (11)
C80.0531 (15)0.0386 (13)0.0346 (12)0.0026 (11)−0.0068 (11)−0.0092 (11)
C90.163 (4)0.0344 (16)0.061 (2)−0.001 (2)−0.026 (2)−0.0127 (15)
C100.072 (2)0.074 (2)0.0448 (16)0.0038 (18)0.0027 (15)−0.0050 (15)
C110.066 (2)0.087 (3)0.060 (2)0.0057 (19)−0.0204 (17)0.0012 (18)
N10.0554 (13)0.0292 (10)0.0359 (11)0.0087 (9)−0.0031 (10)−0.0133 (9)
O10.0609 (12)0.0500 (11)0.0493 (11)0.0138 (9)−0.0197 (9)−0.0200 (9)
O20.0754 (13)0.0433 (10)0.0366 (9)0.0141 (9)0.0048 (9)−0.0110 (8)
O30.0613 (12)0.0543 (12)0.0489 (11)0.0205 (10)0.0008 (9)−0.0175 (9)
Cl10.1118 (8)0.0485 (5)0.0812 (6)−0.0064 (4)−0.0330 (5)−0.0266 (4)
S10.0536 (4)0.0328 (3)0.0340 (3)0.0090 (3)−0.0047 (3)−0.0110 (2)

Geometric parameters (Å, °)

C1—C61.378 (4)C8—C91.520 (4)
C1—C21.391 (3)C8—C101.523 (4)
C1—S11.763 (3)C9—H9A0.9600
C2—C31.380 (4)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.374 (4)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.387 (4)C10—H10C0.9600
C4—Cl11.736 (3)C11—H11A0.9600
C5—C61.379 (4)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300N1—S11.649 (2)
C7—O31.208 (3)N1—H1N0.82 (3)
C7—N11.389 (3)O1—S11.419 (2)
C7—C81.525 (3)O2—S11.4354 (19)
C8—C111.518 (4)
C6—C1—C2121.1 (2)C8—C9—H9A109.5
C6—C1—S1119.36 (19)C8—C9—H9B109.5
C2—C1—S1119.5 (2)H9A—C9—H9B109.5
C3—C2—C1119.0 (2)C8—C9—H9C109.5
C3—C2—H2120.5H9A—C9—H9C109.5
C1—C2—H2120.5H9B—C9—H9C109.5
C4—C3—C2119.5 (2)C8—C10—H10A109.5
C4—C3—H3120.2C8—C10—H10B109.5
C2—C3—H3120.2H10A—C10—H10B109.5
C3—C4—C5121.7 (3)C8—C10—H10C109.5
C3—C4—Cl1120.0 (2)H10A—C10—H10C109.5
C5—C4—Cl1118.2 (2)H10B—C10—H10C109.5
C6—C5—C4118.7 (3)C8—C11—H11A109.5
C6—C5—H5120.6C8—C11—H11B109.5
C4—C5—H5120.6H11A—C11—H11B109.5
C1—C6—C5119.8 (2)C8—C11—H11C109.5
C1—C6—H6120.1H11A—C11—H11C109.5
C5—C6—H6120.1H11B—C11—H11C109.5
O3—C7—N1120.3 (2)C7—N1—S1123.41 (18)
O3—C7—C8124.5 (2)C7—N1—H1N123 (2)
N1—C7—C8115.1 (2)S1—N1—H1N112 (2)
C11—C8—C9110.4 (3)O1—S1—O2118.95 (12)
C11—C8—C10109.3 (3)O1—S1—N1110.80 (12)
C9—C8—C10110.1 (3)O2—S1—N1103.81 (11)
C11—C8—C7108.0 (2)O1—S1—C1108.91 (12)
C9—C8—C7110.1 (2)O2—S1—C1109.30 (12)
C10—C8—C7109.0 (2)N1—S1—C1103.99 (11)
C6—C1—C2—C30.3 (4)O3—C7—C8—C107.1 (4)
S1—C1—C2—C3−178.41 (19)N1—C7—C8—C10−175.6 (2)
C1—C2—C3—C4−0.6 (4)O3—C7—N1—S19.2 (4)
C2—C3—C4—C5−0.1 (4)C8—C7—N1—S1−168.17 (19)
C2—C3—C4—Cl1179.8 (2)C7—N1—S1—O1−57.7 (2)
C3—C4—C5—C61.0 (4)C7—N1—S1—O2173.5 (2)
Cl1—C4—C5—C6−178.9 (2)C7—N1—S1—C159.2 (2)
C2—C1—C6—C50.6 (4)C6—C1—S1—O1170.94 (19)
S1—C1—C6—C5179.4 (2)C2—C1—S1—O1−10.3 (2)
C4—C5—C6—C1−1.3 (4)C6—C1—S1—O2−57.6 (2)
O3—C7—C8—C11−111.5 (3)C2—C1—S1—O2121.2 (2)
N1—C7—C8—C1165.7 (3)C6—C1—S1—N152.8 (2)
O3—C7—C8—C9127.9 (3)C2—C1—S1—N1−128.5 (2)
N1—C7—C8—C9−54.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.82 (3)2.19 (3)2.986 (3)165 (3)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2303).

References

  • Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008a). Acta Cryst. E64 Submitted. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Sowmya, B. P., Nirmala, P. G. & Fuess, H. (2008b). Acta Cryst. E64 Submitted. [Paper reference RK2096].
  • Gowda, B. T., Jyothi, K., Kozisek, J. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 656–660.
  • Gowda, B. T., Svoboda, I., Paulus, H. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 331–337.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography