PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1271–o1272.
Published online 2008 June 13. doi:  10.1107/S1600536808017716
PMCID: PMC2961755

2-[(E)-(5-Amino-2,3-diphenyl­quinoxalin-6-yl)imino­meth­yl]-4-bromo­phenol

Abstract

The title compound, C27H19BrN4O, is a mono-anil Schiff base ligand. Three intra­molecular O—H(...)N and N—H(...)N hydrogen bonds involving the hydr­oxy and amino groups generate S(6) and S(5) ring motifs, respectively. In the crystal structure, weak inter­molecular N—H(...)O and C—H(...)O hydrogen bonds together with π–π inter­actions [centroid–centroid distances = 3.628 (3)–3.729 (3) Å] link neighboring mol­ecules.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures see, for example: Corden et al. (1996 [triangle]); Govindasamy et al. (1999 [triangle]). For applications and bioactivities see, for example: Blower (1998 [triangle]); Cohen & Schmidt (1964 [triangle]); Granovski et al. (1993 [triangle]); Kia et al. (2004 [triangle]); Li & Chang (1991 [triangle]); Shahrokhian et al. (2000 [triangle]); Uhlenbrock et al. (1996 [triangle]); Unaleroglu & Hokelek (2002 [triangle]). For related literature, see: Anderson et al. (1997 [triangle]); Blower (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1271-scheme1.jpg

Experimental

Crystal data

  • C27H19BrN4O
  • M r = 495.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1271-efi1.jpg
  • a = 22.923 (5) Å
  • b = 7.344 (5) Å
  • c = 12.573 (5) Å
  • β = 92.070 (5)°
  • V = 2115.2 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.97 mm−1
  • T = 100.0 (1) K
  • 0.39 × 0.37 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.510, T max = 0.853
  • 22554 measured reflections
  • 6205 independent reflections
  • 3722 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.142
  • S = 1.06
  • 6205 reflections
  • 305 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.61 e Å−3
  • Δρmin = −1.07 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017716/sj2516sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017716/sj2516Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia and the University of Bath for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Schiff bases are among the most prevalent mixed-donor ligands in coordination chemistry. Schiff bases and their biologically active complexes have been studied over several decades (Anderson et al., 1997; Blower 1998; Corden et al., 1996; Govindasamy et al., 1999; Granovski et al., 1993; Li & Chang, 1991; Shahrokhian et al., 2000). 2-hydroxy Schiff base ligands are of interest mainly due to the existence of O—H···N and O···H—N type hydrogen bonds and tautomerization between the phenol-imine and keto-amine forms (Unaleroglu & Hokelek, 2002; Kia et al., 2004). This type of tautomerism plays an important role for distinguishing their photochromic and thermochromic properties (Cohen & Schmidt, 1964). Knowing the structures of free Schiff bases in solution and in the solid state is important in view of the intramolecular hydrogen bonding and comparison with the structure of Schiff base complexes. In view of the importance of these organic ligands, the title compound (I) was synthesized and its crystal structure is reported here.

In the title compound (Fig. 1), intramolecular O—H···N, and N—H···N hydrogen bonds form six and five-membered rings, producing S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The two phenyl substituents on the quinoxaline unit are inclined at an angle of 17.87 (17)° to one another. They also form dihedral angles of 38.96 (15) and 44.46 (15)° with the ten–membered quinoxaline ring. In the crystal packing (Fig. 2), molecules are stacked along the b axis by π···π interactions with Cg2···Cg3 distances ranging from 3.628 (3) – 3.729 (3) Å: symmetry codes 1 - x, 1/2 + y, 3/2 - z and 1 - x, -1/2 + y, 3/2 - z; Cg2 and Cg3 are the centroids of the C1–C6 and C8/C9/C10/C11/C14/C15 phenyl rings, respectively. The crystal structure is stabilized by intramolecular O—H···N, and N—H···N hydrogen bonds, weak intermolecular N—H···O and C—H···O hydrogen bonds, and π···π interactions.

Experimental

A mixture of o-diaminoquinoxaline (313 mg, 1 mmol) and 5-bromo salicylaldehyde (210 mg, 1 mmol) was suspended in 30 ml absolute ethanol. The reaction mixture was stirred under reflux for 1 h. After cooling, the precipitate was filtered, washed with ethanol and ether and dried under vacuum. Single crystals suitable for X-ray diffraction were obtained by evaporation of a mixed chloroform-ethanol (3/1, v/v) solution at room temperature.

Refinement

The H-atoms attached to O1 were located from the difference Fourier map and refined as riding with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The H-atoms bound to N were located in a difference Fourier map and refined freely with the parent atom with an isotropic thermal parameter 1.2 times that of the parent atom. The rest of the hydrogen atoms were positioned geometrically [C—H = 0.93 Å] and refined using a riding model, with thermal parameters 1.2 times those of the parent atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular interactions are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed along the b-axis with hydrogen bonds drawn as dashed lines.

Crystal data

C27H19BrN4OF000 = 1008
Mr = 495.37Dx = 1.556 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 4509 reflections
a = 22.923 (5) Åθ = 2.9–28.3º
b = 7.344 (5) ŵ = 1.97 mm1
c = 12.573 (5) ÅT = 100.0 (1) K
β = 92.070 (5)ºBlock, yellow
V = 2115.2 (17) Å30.39 × 0.37 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6205 independent reflections
Radiation source: fine-focus sealed tube3722 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.070
T = 100.0(1) Kθmax = 30.1º
[var phi] and ω scansθmin = 0.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −32→32
Tmin = 0.510, Tmax = 0.853k = −10→8
22554 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142  w = 1/[σ2(Fo2) + (0.0698P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6205 reflectionsΔρmax = 0.62 e Å3
305 parametersΔρmin = −1.07 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.259515 (13)0.53134 (5)0.59180 (3)0.02170 (12)
N10.52495 (11)0.6363 (4)0.7764 (2)0.0171 (6)
N20.60814 (13)0.5339 (4)0.9285 (2)0.0186 (6)
N40.72399 (11)0.5294 (4)0.8819 (2)0.0154 (6)
N30.76064 (11)0.6677 (4)0.6873 (2)0.0169 (6)
O10.44969 (9)0.7345 (3)0.91363 (18)0.0206 (5)
H1O10.48130.71010.88770.025*
C10.40804 (13)0.6934 (4)0.8389 (3)0.0177 (7)
C20.34965 (14)0.7191 (4)0.8608 (3)0.0188 (7)
H20.33980.76940.92560.023*
C30.30643 (13)0.6715 (5)0.7882 (3)0.0205 (8)
H30.26750.68830.80440.025*
C40.32022 (13)0.5985 (5)0.6910 (3)0.0183 (7)
C50.37775 (13)0.5769 (4)0.6645 (3)0.0176 (7)
H50.38660.53050.59820.021*
C60.42273 (13)0.6246 (4)0.7373 (3)0.0162 (7)
C70.48319 (13)0.6048 (5)0.7087 (3)0.0166 (7)
H70.49170.56880.64000.010 (8)*
C80.58402 (12)0.6335 (4)0.7490 (3)0.0146 (7)
C90.60282 (13)0.6891 (4)0.6473 (3)0.0174 (7)
H90.57520.72030.59450.021*
C100.66057 (13)0.6973 (4)0.6258 (3)0.0170 (7)
H100.67210.73440.55910.020*
C110.70293 (13)0.6494 (4)0.7053 (3)0.0159 (7)
C140.68498 (13)0.5891 (4)0.8062 (3)0.0135 (6)
C150.62412 (13)0.5842 (4)0.8283 (3)0.0157 (7)
C120.79874 (13)0.6218 (5)0.7641 (3)0.0165 (7)
C130.78033 (13)0.5390 (4)0.8603 (3)0.0161 (7)
C160.82122 (13)0.4561 (5)0.9406 (3)0.0174 (7)
C170.81113 (14)0.4750 (5)1.0488 (3)0.0185 (7)
H170.77930.54281.07020.022*
C180.84782 (13)0.3944 (5)1.1246 (3)0.0199 (7)
H180.84080.40861.19650.024*
C190.89531 (14)0.2918 (5)1.0935 (3)0.0223 (8)
H190.92050.23931.14440.027*
C200.90483 (14)0.2686 (5)0.9858 (3)0.0224 (8)
H200.93580.19700.96450.027*
C210.86863 (13)0.3509 (5)0.9104 (3)0.0196 (7)
H210.87580.33640.83860.024*
C220.86036 (13)0.6776 (4)0.7467 (3)0.0166 (7)
C230.89337 (13)0.7640 (5)0.8263 (3)0.0198 (7)
H230.87860.77580.89390.024*
C240.94824 (14)0.8330 (5)0.8060 (3)0.0220 (8)
H240.97010.89160.85950.026*
C250.97015 (14)0.8138 (5)0.7048 (3)0.0215 (8)
H251.00680.86030.69060.026*
C260.93829 (14)0.7271 (5)0.6262 (3)0.0215 (8)
H260.95350.71370.55900.026*
C270.88320 (13)0.6588 (5)0.6463 (3)0.0198 (7)
H270.86150.60040.59250.024*
H2N20.6362 (17)0.487 (5)0.970 (3)0.024*
H1N20.5740 (17)0.479 (5)0.925 (3)0.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01741 (16)0.02067 (18)0.0269 (2)−0.00067 (13)−0.00060 (13)0.00133 (17)
N10.0177 (13)0.0150 (15)0.0187 (16)0.0014 (10)0.0023 (11)0.0015 (12)
N20.0185 (13)0.0240 (15)0.0134 (15)−0.0013 (12)0.0037 (11)0.0011 (13)
N40.0168 (12)0.0141 (13)0.0152 (15)−0.0001 (10)0.0007 (10)−0.0019 (12)
N30.0178 (13)0.0166 (15)0.0163 (15)−0.0007 (10)0.0011 (11)−0.0018 (12)
O10.0200 (11)0.0251 (14)0.0169 (13)−0.0002 (9)0.0033 (10)−0.0002 (11)
C10.0213 (16)0.0129 (17)0.0190 (19)−0.0012 (12)0.0019 (14)0.0034 (14)
C20.0228 (16)0.0151 (17)0.0189 (19)0.0015 (12)0.0044 (14)0.0051 (14)
C30.0166 (15)0.0174 (18)0.028 (2)0.0021 (12)0.0043 (14)0.0079 (15)
C40.0191 (15)0.0133 (16)0.022 (2)−0.0001 (12)0.0016 (13)0.0046 (15)
C50.0197 (15)0.0155 (17)0.0178 (19)0.0018 (12)0.0028 (13)0.0011 (13)
C60.0186 (15)0.0131 (17)0.0168 (18)−0.0003 (12)0.0026 (13)0.0018 (14)
C70.0198 (15)0.0130 (16)0.0171 (19)0.0009 (12)0.0010 (13)0.0022 (14)
C80.0155 (14)0.0128 (16)0.0156 (18)−0.0012 (11)0.0012 (12)−0.0013 (13)
C90.0194 (15)0.0153 (17)0.0174 (19)−0.0003 (12)0.0001 (13)0.0022 (14)
C100.0190 (15)0.0168 (17)0.0155 (18)−0.0007 (12)0.0027 (13)0.0025 (14)
C110.0179 (15)0.0135 (16)0.0163 (18)−0.0003 (11)0.0034 (13)−0.0002 (13)
C140.0181 (15)0.0085 (14)0.0137 (17)0.0002 (11)−0.0012 (12)−0.0002 (13)
C150.0216 (15)0.0112 (15)0.0145 (18)−0.0016 (12)0.0027 (13)−0.0036 (13)
C120.0154 (14)0.0182 (17)0.0161 (18)0.0002 (12)0.0028 (13)−0.0020 (14)
C130.0164 (14)0.0151 (16)0.0169 (18)0.0011 (12)0.0021 (12)−0.0046 (15)
C160.0155 (14)0.0176 (17)0.0192 (19)−0.0021 (12)0.0018 (12)0.0008 (15)
C170.0195 (15)0.0181 (16)0.0180 (19)−0.0017 (13)0.0024 (13)−0.0013 (15)
C180.0201 (16)0.0218 (18)0.0179 (19)−0.0010 (13)0.0003 (13)0.0030 (15)
C190.0174 (16)0.025 (2)0.024 (2)0.0000 (13)−0.0026 (14)0.0043 (16)
C200.0173 (15)0.0227 (19)0.028 (2)0.0054 (13)0.0036 (14)0.0021 (16)
C210.0201 (16)0.0191 (18)0.0198 (19)0.0015 (12)0.0037 (14)0.0013 (15)
C220.0160 (14)0.0162 (17)0.0180 (18)0.0006 (12)0.0034 (13)−0.0004 (14)
C230.0188 (15)0.0250 (19)0.0158 (19)−0.0009 (13)0.0034 (13)−0.0012 (15)
C240.0202 (16)0.0253 (19)0.020 (2)−0.0019 (13)0.0001 (14)0.0012 (16)
C250.0162 (15)0.027 (2)0.022 (2)0.0006 (13)0.0034 (14)0.0050 (16)
C260.0203 (16)0.028 (2)0.0165 (19)0.0026 (13)0.0049 (14)0.0002 (16)
C270.0210 (16)0.0221 (19)0.0164 (19)0.0029 (13)0.0015 (13)−0.0019 (15)

Geometric parameters (Å, °)

Br1—C41.900 (4)C10—H100.9300
N1—C71.279 (4)C11—C141.418 (4)
N1—C81.409 (3)C14—C151.433 (4)
N2—C151.376 (4)C12—C131.431 (4)
N2—H2N20.88 (4)C12—C221.495 (4)
N2—H1N20.88 (4)C13—C161.483 (5)
N4—C131.331 (4)C16—C171.396 (5)
N4—C141.355 (4)C16—C211.397 (4)
N3—C121.322 (4)C17—C181.382 (5)
N3—C111.357 (4)C17—H170.9300
O1—C11.350 (4)C18—C191.391 (4)
O1—H1O10.8254C18—H180.9300
C1—C21.389 (4)C19—C201.390 (5)
C1—C61.425 (5)C19—H190.9300
C2—C31.368 (5)C20—C211.377 (5)
C2—H20.9300C20—H200.9300
C3—C41.382 (5)C21—H210.9300
C3—H30.9300C22—C231.386 (5)
C4—C51.381 (4)C22—C271.391 (4)
C5—C61.398 (5)C23—C241.388 (4)
C5—H50.9300C23—H230.9300
C6—C71.452 (4)C24—C251.392 (5)
C7—H70.9300C24—H240.9300
C8—C151.380 (5)C25—C261.365 (5)
C8—C91.424 (4)C25—H250.9300
C9—C101.362 (4)C26—C271.390 (4)
C9—H90.9300C26—H260.9300
C10—C111.413 (5)C27—H270.9300
C7—N1—C8122.5 (3)N2—C15—C14118.5 (3)
C15—N2—H2N2116 (3)C8—C15—C14118.8 (3)
C15—N2—H1N2110 (3)N3—C12—C13121.2 (3)
H2N2—N2—H1N2118 (4)N3—C12—C22115.2 (3)
C13—N4—C14117.4 (3)C13—C12—C22123.3 (3)
C12—N3—C11118.3 (3)N4—C13—C12120.8 (3)
C1—O1—H1O1106.6N4—C13—C16115.7 (3)
O1—C1—C2119.6 (3)C12—C13—C16123.4 (3)
O1—C1—C6121.3 (3)C17—C16—C21118.5 (3)
C2—C1—C6119.1 (3)C17—C16—C13120.0 (3)
C3—C2—C1120.9 (3)C21—C16—C13121.4 (3)
C3—C2—H2119.6C18—C17—C16120.8 (3)
C1—C2—H2119.6C18—C17—H17119.6
C2—C3—C4120.4 (3)C16—C17—H17119.6
C2—C3—H3119.8C17—C18—C19120.0 (3)
C4—C3—H3119.8C17—C18—H18120.0
C5—C4—C3120.6 (3)C19—C18—H18120.0
C5—C4—Br1119.7 (3)C20—C19—C18119.5 (3)
C3—C4—Br1119.7 (2)C20—C19—H19120.2
C4—C5—C6120.1 (3)C18—C19—H19120.2
C4—C5—H5119.9C21—C20—C19120.3 (3)
C6—C5—H5119.9C21—C20—H20119.8
C5—C6—C1118.9 (3)C19—C20—H20119.8
C5—C6—C7120.0 (3)C20—C21—C16120.8 (3)
C1—C6—C7121.1 (3)C20—C21—H21119.6
N1—C7—C6121.0 (3)C16—C21—H21119.6
N1—C7—H7119.5C23—C22—C27119.1 (3)
C6—C7—H7119.5C23—C22—C12121.0 (3)
C15—C8—N1116.6 (3)C27—C22—C12119.6 (3)
C15—C8—C9120.6 (3)C22—C23—C24120.6 (3)
N1—C8—C9122.7 (3)C22—C23—H23119.7
C10—C9—C8121.2 (3)C24—C23—H23119.7
C10—C9—H9119.4C23—C24—C25119.3 (3)
C8—C9—H9119.4C23—C24—H24120.3
C9—C10—C11119.8 (3)C25—C24—H24120.3
C9—C10—H10120.1C26—C25—C24120.5 (3)
C11—C10—H10120.1C26—C25—H25119.7
N3—C11—C10120.4 (3)C24—C25—H25119.7
N3—C11—C14119.8 (3)C25—C26—C27120.2 (3)
C10—C11—C14119.8 (3)C25—C26—H26119.9
N4—C14—C11121.6 (3)C27—C26—H26119.9
N4—C14—C15118.6 (3)C26—C27—C22120.2 (3)
C11—C14—C15119.8 (3)C26—C27—H27119.9
N2—C15—C8122.7 (3)C22—C27—H27119.9
O1—C1—C2—C3−177.3 (3)C11—C14—C15—N2−176.8 (3)
C6—C1—C2—C33.1 (5)N4—C14—C15—C8−175.8 (3)
C1—C2—C3—C4−0.7 (5)C11—C14—C15—C82.0 (5)
C2—C3—C4—C5−1.7 (5)C11—N3—C12—C135.7 (5)
C2—C3—C4—Br1179.5 (2)C11—N3—C12—C22−169.0 (3)
C3—C4—C5—C61.6 (5)C14—N4—C13—C124.5 (4)
Br1—C4—C5—C6−179.5 (2)C14—N4—C13—C16−174.3 (3)
C4—C5—C6—C10.7 (5)N3—C12—C13—N4−9.6 (5)
C4—C5—C6—C7−178.9 (3)C22—C12—C13—N4164.7 (3)
O1—C1—C6—C5177.3 (3)N3—C12—C13—C16169.1 (3)
C2—C1—C6—C5−3.1 (5)C22—C12—C13—C16−16.6 (5)
O1—C1—C6—C7−3.1 (5)N4—C13—C16—C17−39.1 (4)
C2—C1—C6—C7176.6 (3)C12—C13—C16—C17142.2 (3)
C8—N1—C7—C6−174.5 (3)N4—C13—C16—C21137.8 (3)
C5—C6—C7—N1−175.3 (3)C12—C13—C16—C21−40.9 (5)
C1—C6—C7—N15.0 (5)C21—C16—C17—C181.2 (5)
C7—N1—C8—C15−150.5 (3)C13—C16—C17—C18178.1 (3)
C7—N1—C8—C933.4 (5)C16—C17—C18—C19−0.4 (5)
C15—C8—C9—C10−0.8 (5)C17—C18—C19—C20−1.2 (5)
N1—C8—C9—C10175.2 (3)C18—C19—C20—C212.0 (5)
C8—C9—C10—C110.3 (5)C19—C20—C21—C16−1.2 (5)
C12—N3—C11—C10179.8 (3)C17—C16—C21—C20−0.4 (5)
C12—N3—C11—C142.5 (4)C13—C16—C21—C20−177.3 (3)
C9—C10—C11—N3−175.9 (3)N3—C12—C22—C23132.1 (3)
C9—C10—C11—C141.4 (5)C13—C12—C22—C23−42.5 (5)
C13—N4—C14—C113.7 (5)N3—C12—C22—C27−41.7 (4)
C13—N4—C14—C15−178.6 (3)C13—C12—C22—C27143.7 (3)
N3—C11—C14—N4−7.5 (5)C27—C22—C23—C240.8 (5)
C10—C11—C14—N4175.2 (3)C12—C22—C23—C24−173.0 (3)
N3—C11—C14—C15174.8 (3)C22—C23—C24—C25−0.4 (5)
C10—C11—C14—C15−2.5 (5)C23—C24—C25—C26−0.4 (5)
N1—C8—C15—N22.1 (5)C24—C25—C26—C270.7 (5)
C9—C8—C15—N2178.4 (3)C25—C26—C27—C22−0.3 (5)
N1—C8—C15—C14−176.6 (3)C23—C22—C27—C26−0.4 (5)
C9—C8—C15—C14−0.3 (5)C12—C22—C27—C26173.4 (3)
N4—C14—C15—N25.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.831.832.586 (4)151
N2—H2N2···N40.88 (4)2.35 (4)2.740 (4)107 (3)
N2—H1N2···N10.88 (4)2.44 (4)2.756 (4)102 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2516).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Anderson, O. P., Cour, A. L., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. & Toftland, H. L. (1997). J. Chem. Soc. Dalton Trans. pp. 111–120.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Eng1.34, 1555–1573.
  • Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2041–2051.
  • Corden, J. P., Bishop, P. R., Errington, W. & Wallbridge, M. G. H. (1996). Acta Cryst. C52, 2777–2779.
  • Govindasamy, L., Velmurugan, D. & Rajendran, T. M. (1999). Acta Cryst. C55, 1368–1369.
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Kia, R., Esmaeilbeig, A. & Harkema, S. (2004). Acta Cryst. A60, s267.
  • Li, C. H. & Chang, T. C. (1991). Eur. Polym. J.27, 35–39.
  • Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Uhlenbrock, S., Wegner, R. & Krebs, B. J. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736.
  • Unaleroglu, C. & Hokelek, T. (2002). Spectrosc. Lett.32, 317–326.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography