PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1329.
Published online 2008 June 21. doi:  10.1107/S1600536808018370
PMCID: PMC2961753

Ammonium tri-tert-butoxy­silanethiol­ate

Abstract

The cations and anions of the title salt, NH4 +·C12H27O3SSi, are linked by N—H(...)S and N—H(...)O hydrogen bonds into a linear chain that runs along the a axis of the monoclinic unit cell. The asymmetric unit contains two cations and two anions.

Related literature

For the synthesis of the thiol reagent, see: Piękoś & Wojnowski (1962 [triangle]). For an early study of its ammonium salt, see: Wojnowski (1971 [triangle]). For the structures of similar salts and comparison bond distances, see: Baranowska (2007 [triangle]); Baranowska, Chojnacki, Becker & Wojnowski (2003 [triangle]); Baranowska, Chojnacki, Gosiewska & Wojnowski (2006 [triangle]); Baranowska, Chojnacki, Konitz et al. (2006 [triangle]); Baranowska, Chojnacki, Wojnowski & Becker (2003 [triangle]); Becker et al. (2002 [triangle], 2004 [triangle]); Chojnacki (2008 [triangle]); Dołęga et al. (2008 [triangle]); Pladzyk & Baranowska (2007 [triangle]). For the graph-set description of hydrogen-bonding patterns, see: Bernstein et al. (1995 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1329-scheme1.jpg

Experimental

Crystal data

  • NH4 +·C12H27O3SSi
  • M r = 297.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1329-efi1.jpg
  • a = 11.9981 (4) Å
  • b = 12.5580 (5) Å
  • c = 24.8181 (12) Å
  • β = 100.336 (4)°
  • V = 3678.7 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 120 (2) K
  • 0.2 × 0.06 × 0.04 mm

Data collection

  • Oxford Diffraction KM-4 CCD diffractometer
  • Absorption correction: none
  • 12272 measured reflections
  • 6433 independent reflections
  • 4509 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.126
  • S = 1.04
  • 6433 reflections
  • 367 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.71 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018370/ng2465sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018370/ng2465Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was undertaken with financial support from the Polish State Committee, grant No. 3 T09A 12028.

supplementary crystallographic information

Comment

Complexes of trialkoxysilanethiols with ammonia were first obtained in 1971 by the reaction of (iPrO)3SiSH and (sBuO)3SiSH (Wojnowski, 1971) with ammonia but no structural data are available.

Amino tri-tert-butoxysilanethiolates show great structural diversity. Structures of isolated dimers, cubans, chains or sheets have been recognized so far. Cubic motifs were characterized for salts of primary amines (Becker, et al., 2004); for secondary amines dimers and/or chains have been found (Baranowska, Chojnacki, Konitz et al., 2006, Baranowska, Chojnacki, Becker & Wojnowski, 2003).

The asymmetric unit of (I) consists of two silanethiolate anions and two ammonium cations (Fig.1). The ions are connected via N(+)–H···S(-) hydrogen bonds, forming an eight-membered ring as R24(8) with four donors and two acceptors (Etter, 1990; Bernstein et al., 1995). Similar (thiol-amine)2 ring formation has been observed in other ammonium salts (Baranowska, Chojnacki, Konitz et al., 2006; Baranowska, Chojnacki, Wojnowski & Becker, 2003). These rings are futher linked by N–H···S and N–H···O hydrogen bonds into chains parallel to the (010) (Fig.2). The application of graph theory to the chain results in a variety of possible hydrogen bonding patterns: the N1–H1C···S1, N1–H1A···S1(i), N1–H1C···S1(i) and N1–H1A···S1 hydrogen bonds form an R24(8)ring, the N2–H2E···S2(ii), N2–H2F···S2(ii), N2–H2F···S2 and N2–H2E···S2 hydrogen bonds form an R24(8) ring, the N1–H1C···S1and N1–H1D···O2 hydrogen bonds form an R22(6) ring, the N2–H2G···O5(ii)and N2–H2E···S2(ii) hydrogen bonds form an R12(6) ring, the N1–H1B···S2, N2–H2F···S2, N1–H1C···S1 and N2–H2D···S1 hydrogen bonds form an R24(8) ring, in which atom N2 acts as a bifurcated donor.

The N···S distances in (I) lie in the range 2.886 (3)–3.340 (3) Å, comparable with values observed in other silanethiolates (Baranowska, Chojnacki, Gosiewska & Wojnowski 2006; Pladzyk & Baranowska, 2007; Dołęga et al., 2008) or aromatic thiolates (Baranowska, Chojnacki, Becker & Wojnowski, 2003; Baranowska, 2007). The length of silicon – sulfur bond is short (2.059 – 2.062 Å) and it is characteristic for ionic silanethiolates (Becker et al., 2002, Chojnacki, 2008). Hydrogen bonds are grouped in " hydrophilic" core, while the organic hydrocarbon groups form "hydrophobic" coat in the crystal. It is a very characteristic motif for many polimeric structures.

Experimental

The substrate (tBuO)3SiSH was prepared according to the literature (Piękoś & Wojnowski, 1962).

To the mixture of to tri-tert-butoxysilanethiol (1.9 g; 0.0064 mol) and metallic magnesium (0.084 g; 0.0035 mol) in toluene one drop of concentrated ammonia solution was added. The mixture was stirred and heated at boiling point of toluene for one week. The solution was separated from the metal by filtration. The solvent was removed. The liquid residue was kept in refrigerator (4 °C) for a few days for crystallization. The final product has a form of colourless, crystalline needles.

Refinement

All H atoms were refined as riding on C atoms with methyl C—H = 0.98 Å, and 1.5Ueq(C) for CH3 groups. Hydrogen atoms of ammonium were found in the electron density Fourier map and were refined with N—H bond lengths constrained to 0.89 (2) Å.

Figures

Fig. 1.
A view of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. All tBu H atoms have been omitted for clarity. Hydrogen bonds are indicated with dashed lines.
Fig. 2.
The chains of molecules of (I) linked by hydrogen bonds. A view direction is parallel to the crystallographic b axis. All tBu H atoms have been omitted for clarity. Hydrogen bonds are indicated with dashed lines.

Crystal data

NH4+·C12H27O3SSiF000 = 1312
Mr = 297.53Dx = 1.074 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7143 reflections
a = 11.9981 (4) Åθ = 2.0–32.4º
b = 12.5580 (5) ŵ = 0.24 mm1
c = 24.8181 (12) ÅT = 120 (2) K
β = 100.336 (4)ºPrism, colourless
V = 3678.7 (3) Å30.2 × 0.06 × 0.04 mm
Z = 8

Data collection

Oxford Diffraction KM-4 CCD diffractometer4509 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
Detector resolution: 8.1883 pixels mm-1θmax = 25.1º
T = 120(2) Kθmin = 2.4º
0.75° width ω scansh = −14→8
Absorption correction: nonek = −14→8
12272 measured reflectionsl = −29→29
6433 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126  w = 1/[σ2(Fo2) + (0.0746P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6433 reflectionsΔρmax = 0.72 e Å3
367 parametersΔρmin = −0.38 e Å3
8 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.42331 (5)0.53353 (5)0.58655 (3)0.02431 (17)
Si10.42375 (6)0.37946 (6)0.61491 (3)0.01975 (18)
O10.49073 (14)0.35757 (14)0.67658 (7)0.0264 (4)
O20.47413 (14)0.29078 (13)0.57685 (7)0.0236 (4)
O30.28781 (14)0.34803 (14)0.60815 (7)0.0234 (4)
C10.5191 (2)0.4195 (3)0.72592 (12)0.0377 (7)
C20.4156 (3)0.4800 (3)0.73596 (13)0.0554 (10)
H2A0.35330.430.73690.083*
H2B0.39320.53180.70640.083*
H2C0.43340.51760.77110.083*
C30.6160 (3)0.4934 (4)0.72026 (16)0.0703 (12)
H3A0.59110.54430.69060.105*
H3B0.67970.45160.71180.105*
H3C0.640.53210.75470.105*
C40.5552 (3)0.3381 (3)0.77117 (12)0.0550 (10)
H4A0.49240.28890.77270.082*
H4B0.57570.37490.80640.082*
H4C0.62070.2980.76350.082*
C50.5858 (2)0.2435 (2)0.58098 (11)0.0273 (6)
C60.5803 (2)0.1793 (2)0.52880 (12)0.0351 (7)
H6A0.56410.22690.49710.053*
H6B0.52020.12580.52650.053*
H6C0.65310.14370.52910.053*
C70.6098 (3)0.1701 (3)0.63015 (12)0.0424 (8)
H7A0.61080.21150.66370.064*
H7B0.68350.13570.63140.064*
H7C0.55050.11560.62720.064*
C80.6743 (2)0.3297 (2)0.58404 (15)0.0450 (9)
H8A0.65920.37290.55060.067*
H8B0.74950.29720.58760.067*
H8C0.67150.37510.61590.067*
C90.2329 (2)0.2472 (2)0.61567 (12)0.0317 (7)
C100.2878 (3)0.1914 (3)0.66557 (15)0.0667 (12)
H10A0.36770.17880.66380.1*
H10B0.24970.12320.66840.1*
H10C0.28250.23520.69770.1*
C110.2340 (3)0.1800 (3)0.56391 (15)0.0600 (10)
H11A0.20380.22230.53140.09*
H11B0.1870.11650.56490.09*
H11C0.31190.15850.56250.09*
C120.1101 (3)0.2741 (3)0.6167 (2)0.0734 (13)
H12A0.07630.30860.58220.11*
H12B0.10610.32240.64730.11*
H12C0.06840.20860.62130.11*
S20.10838 (5)0.46097 (5)0.41794 (3)0.02520 (18)
Si20.05808 (6)0.31006 (6)0.39125 (3)0.02122 (18)
O40.02593 (15)0.29638 (15)0.32505 (7)0.0286 (4)
O5−0.05329 (15)0.28237 (14)0.41883 (8)0.0311 (5)
O60.15294 (16)0.21879 (15)0.41046 (7)0.0348 (5)
C13−0.0289 (2)0.3627 (3)0.28096 (11)0.0349 (7)
C140.0582 (3)0.4383 (3)0.26532 (14)0.0525 (10)
H14A0.08940.48270.29690.079*
H14B0.02230.48380.23510.079*
H14C0.11940.39730.25380.079*
C15−0.1263 (3)0.4238 (3)0.29753 (13)0.0468 (9)
H15A−0.09710.47150.32810.07*
H15B−0.18030.37370.30880.07*
H15C−0.16450.46590.26640.07*
C16−0.0726 (3)0.2868 (3)0.23444 (13)0.0578 (10)
H16A−0.12980.23970.24530.087*
H16B−0.00960.2440.2260.087*
H16C−0.10650.32760.2020.087*
C17−0.1164 (3)0.1842 (2)0.42078 (12)0.0354 (7)
C18−0.1311 (3)0.1229 (3)0.36650 (16)0.0608 (10)
H18A−0.16620.16940.33650.091*
H18B−0.17960.06070.36840.091*
H18C−0.05680.09930.35990.091*
C19−0.0602 (4)0.1198 (3)0.4673 (2)0.1000 (19)
H19A0.01850.10640.46360.15*
H19B−0.10020.05180.46780.15*
H19C−0.06160.15820.50160.15*
C20−0.2341 (3)0.2171 (3)0.4273 (2)0.0743 (13)
H20A−0.26620.26470.39720.111*
H20B−0.23050.25440.46230.111*
H20C−0.28190.15380.42670.111*
C210.2338 (2)0.1648 (2)0.38299 (12)0.0357 (7)
C220.1726 (3)0.0832 (3)0.34325 (14)0.0484 (9)
H22A0.11920.11960.31460.073*
H22B0.13110.03380.3630.073*
H22C0.22790.04360.32650.073*
C230.3137 (3)0.1104 (3)0.42870 (14)0.0545 (10)
H23A0.34990.1640.45480.082*
H23B0.37190.07190.41340.082*
H23C0.27120.06020.44750.082*
C240.2952 (3)0.2437 (3)0.35263 (13)0.0482 (9)
H24A0.24110.27680.32310.072*
H24B0.35390.20650.3370.072*
H24C0.33050.29880.37810.072*
N10.36606 (19)0.40699 (19)0.47213 (10)0.0245 (5)
H1A0.419 (2)0.423 (2)0.4515 (10)0.038*
H1B0.2948 (16)0.414 (2)0.4546 (11)0.038*
H1C0.380 (3)0.449 (2)0.5020 (10)0.048*
H1D0.379 (2)0.3393 (15)0.4824 (11)0.026*
N20.1426 (2)0.5109 (2)0.55138 (11)0.0333 (6)
H2E0.071 (2)0.503 (4)0.5577 (19)0.113*
H2D0.185 (3)0.463 (3)0.5707 (16)0.09*
H2F0.137 (3)0.490 (3)0.5165 (8)0.047*
H2G0.166 (3)0.5762 (17)0.5557 (15)0.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0224 (3)0.0208 (3)0.0313 (4)−0.0013 (3)0.0089 (3)0.0004 (3)
Si10.0197 (4)0.0211 (4)0.0188 (4)−0.0014 (3)0.0044 (3)0.0005 (3)
O10.0250 (9)0.0321 (10)0.0209 (10)0.0016 (8)0.0012 (8)−0.0008 (8)
O20.0231 (9)0.0238 (10)0.0237 (10)0.0039 (8)0.0038 (8)0.0002 (8)
O30.0214 (9)0.0242 (10)0.0249 (10)−0.0036 (8)0.0047 (8)0.0026 (8)
C10.0325 (16)0.055 (2)0.0232 (15)−0.0012 (15)−0.0011 (13)−0.0124 (15)
C20.066 (2)0.069 (3)0.0322 (18)0.020 (2)0.0104 (17)−0.0167 (18)
C30.063 (2)0.088 (3)0.053 (2)−0.036 (2)−0.0059 (19)−0.026 (2)
C40.047 (2)0.091 (3)0.0240 (17)0.013 (2)−0.0014 (15)−0.0020 (18)
C50.0262 (14)0.0211 (14)0.0352 (16)0.0072 (12)0.0071 (12)0.0045 (13)
C60.0375 (16)0.0343 (17)0.0347 (17)0.0114 (14)0.0097 (14)0.0008 (14)
C70.054 (2)0.0396 (19)0.0324 (17)0.0204 (16)0.0039 (15)0.0047 (15)
C80.0272 (16)0.0332 (18)0.076 (3)0.0023 (14)0.0138 (16)−0.0061 (17)
C90.0296 (15)0.0264 (16)0.0399 (17)−0.0114 (13)0.0086 (13)0.0069 (14)
C100.073 (3)0.063 (2)0.057 (2)−0.033 (2)−0.008 (2)0.030 (2)
C110.072 (3)0.049 (2)0.060 (2)−0.028 (2)0.015 (2)−0.0103 (19)
C120.0363 (19)0.051 (2)0.137 (4)−0.0139 (18)0.027 (2)0.021 (3)
S20.0219 (3)0.0236 (4)0.0301 (4)0.0002 (3)0.0046 (3)−0.0017 (3)
Si20.0227 (4)0.0215 (4)0.0199 (4)0.0040 (3)0.0049 (3)−0.0008 (3)
O40.0289 (10)0.0335 (11)0.0208 (10)0.0077 (9)−0.0026 (8)−0.0002 (9)
O50.0376 (11)0.0216 (10)0.0378 (12)−0.0063 (9)0.0168 (9)−0.0036 (9)
O60.0428 (12)0.0355 (12)0.0250 (10)0.0195 (10)0.0032 (9)−0.0034 (9)
C130.0307 (15)0.0506 (19)0.0217 (15)0.0130 (14)0.0006 (12)0.0056 (14)
C140.0428 (19)0.077 (3)0.0389 (19)0.0078 (18)0.0116 (16)0.0254 (19)
C150.0415 (18)0.064 (2)0.0351 (18)0.0239 (17)0.0062 (15)0.0184 (17)
C160.059 (2)0.083 (3)0.0257 (17)0.013 (2)−0.0085 (16)−0.0033 (18)
C170.0470 (18)0.0211 (15)0.0411 (18)−0.0124 (13)0.0158 (15)−0.0007 (13)
C180.060 (2)0.055 (2)0.069 (3)−0.0186 (19)0.017 (2)−0.021 (2)
C190.119 (4)0.060 (3)0.095 (4)−0.049 (3)−0.050 (3)0.049 (3)
C200.064 (2)0.051 (2)0.119 (4)−0.020 (2)0.047 (3)−0.004 (2)
C210.0326 (16)0.0345 (17)0.0359 (17)0.0169 (14)−0.0052 (13)−0.0168 (14)
C220.0457 (19)0.047 (2)0.049 (2)0.0105 (16)−0.0014 (16)−0.0230 (17)
C230.056 (2)0.042 (2)0.055 (2)0.0265 (17)−0.0198 (17)−0.0226 (17)
C240.0380 (18)0.062 (2)0.046 (2)0.0076 (17)0.0101 (15)−0.0189 (18)
N10.0226 (12)0.0240 (12)0.0279 (13)0.0002 (11)0.0069 (10)0.0001 (11)
N20.0261 (13)0.0430 (16)0.0310 (14)0.0058 (12)0.0058 (11)−0.0021 (13)

Geometric parameters (Å, °)

S1—Si12.0586 (10)O4—C131.437 (3)
Si1—O11.6194 (18)O5—C171.452 (3)
Si1—O21.6439 (18)O6—C211.450 (3)
Si1—O31.6570 (17)C13—C141.514 (4)
O1—C11.439 (3)C13—C151.515 (4)
O2—C51.452 (3)C13—C161.516 (4)
O3—C91.454 (3)C14—H14A0.98
C1—C31.514 (5)C14—H14B0.98
C1—C21.514 (4)C14—H14C0.98
C1—C41.523 (5)C15—H15A0.98
C2—H2A0.98C15—H15B0.98
C2—H2B0.98C15—H15C0.98
C2—H2C0.98C16—H16A0.98
C3—H3A0.98C16—H16B0.98
C3—H3B0.98C16—H16C0.98
C3—H3C0.98C17—C191.471 (5)
C4—H4A0.98C17—C201.507 (4)
C4—H4B0.98C17—C181.534 (4)
C4—H4C0.98C18—H18A0.98
C5—C81.509 (4)C18—H18B0.98
C5—C71.515 (4)C18—H18C0.98
C5—C61.517 (4)C19—H19A0.98
C6—H6A0.98C19—H19B0.98
C6—H6B0.98C19—H19C0.98
C6—H6C0.98C20—H20A0.98
C7—H7A0.98C20—H20B0.98
C7—H7B0.98C20—H20C0.98
C7—H7C0.98C21—C231.511 (4)
C8—H8A0.98C21—C241.514 (5)
C8—H8B0.98C21—C221.517 (4)
C8—H8C0.98C22—H22A0.98
C9—C101.472 (4)C22—H22B0.98
C9—C121.517 (4)C22—H22C0.98
C9—C111.539 (4)C23—H23A0.98
C10—H10A0.98C23—H23B0.98
C10—H10B0.98C23—H23C0.98
C10—H10C0.98C24—H24A0.98
C11—H11A0.98C24—H24B0.98
C11—H11B0.98C24—H24C0.98
C11—H11C0.98N1—H1A0.903 (17)
C12—H12A0.98N1—H1B0.891 (17)
C12—H12B0.98N1—H1C0.899 (18)
C12—H12C0.98N1—H1D0.893 (17)
S2—Si22.0619 (10)N2—H2E0.902 (19)
Si2—O61.6253 (19)N2—H2D0.877 (19)
Si2—O41.6279 (19)N2—H2F0.897 (18)
Si2—O51.6440 (18)N2—H2G0.867 (18)
O1—Si1—O2104.88 (9)C13—O4—Si2134.46 (17)
O1—Si1—O3111.58 (9)C17—O5—Si2131.38 (17)
O2—Si1—O3103.72 (9)C21—O6—Si2133.17 (18)
O1—Si1—S1116.94 (8)O4—C13—C14108.4 (2)
O2—Si1—S1114.76 (7)O4—C13—C15110.9 (2)
O3—Si1—S1104.31 (7)C14—C13—C15110.7 (3)
C1—O1—Si1135.56 (18)O4—C13—C16105.3 (3)
C5—O2—Si1131.79 (16)C14—C13—C16111.0 (3)
C9—O3—Si1130.88 (16)C15—C13—C16110.3 (3)
O1—C1—C3108.7 (3)C13—C14—H14A109.5
O1—C1—C2109.6 (2)C13—C14—H14B109.5
C3—C1—C2112.0 (3)H14A—C14—H14B109.5
O1—C1—C4104.9 (3)C13—C14—H14C109.5
C3—C1—C4111.0 (3)H14A—C14—H14C109.5
C2—C1—C4110.4 (3)H14B—C14—H14C109.5
C1—C2—H2A109.5C13—C15—H15A109.5
C1—C2—H2B109.5C13—C15—H15B109.5
H2A—C2—H2B109.5H15A—C15—H15B109.5
C1—C2—H2C109.5C13—C15—H15C109.5
H2A—C2—H2C109.5H15A—C15—H15C109.5
H2B—C2—H2C109.5H15B—C15—H15C109.5
C1—C3—H3A109.5C13—C16—H16A109.5
C1—C3—H3B109.5C13—C16—H16B109.5
H3A—C3—H3B109.5H16A—C16—H16B109.5
C1—C3—H3C109.5C13—C16—H16C109.5
H3A—C3—H3C109.5H16A—C16—H16C109.5
H3B—C3—H3C109.5H16B—C16—H16C109.5
C1—C4—H4A109.5O5—C17—C19109.0 (3)
C1—C4—H4B109.5O5—C17—C20106.0 (2)
H4A—C4—H4B109.5C19—C17—C20111.8 (4)
C1—C4—H4C109.5O5—C17—C18112.1 (2)
H4A—C4—H4C109.5C19—C17—C18112.2 (3)
H4B—C4—H4C109.5C20—C17—C18105.7 (3)
O2—C5—C8110.0 (2)C17—C18—H18A109.5
O2—C5—C7110.2 (2)C17—C18—H18B109.5
C8—C5—C7111.5 (3)H18A—C18—H18B109.5
O2—C5—C6105.0 (2)C17—C18—H18C109.5
C8—C5—C6110.3 (2)H18A—C18—H18C109.5
C7—C5—C6109.7 (2)H18B—C18—H18C109.5
C5—C6—H6A109.5C17—C19—H19A109.5
C5—C6—H6B109.5C17—C19—H19B109.5
H6A—C6—H6B109.5H19A—C19—H19B109.5
C5—C6—H6C109.5C17—C19—H19C109.5
H6A—C6—H6C109.5H19A—C19—H19C109.5
H6B—C6—H6C109.5H19B—C19—H19C109.5
C5—C7—H7A109.5C17—C20—H20A109.5
C5—C7—H7B109.5C17—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20B109.5
C5—C7—H7C109.5C17—C20—H20C109.5
H7A—C7—H7C109.5H20A—C20—H20C109.5
H7B—C7—H7C109.5H20B—C20—H20C109.5
C5—C8—H8A109.5O6—C21—C23104.3 (2)
C5—C8—H8B109.5O6—C21—C24110.7 (2)
H8A—C8—H8B109.5C23—C21—C24111.6 (3)
C5—C8—H8C109.5O6—C21—C22109.6 (2)
H8A—C8—H8C109.5C23—C21—C22110.6 (3)
H8B—C8—H8C109.5C24—C21—C22109.9 (3)
O3—C9—C10112.2 (2)C21—C22—H22A109.5
O3—C9—C12105.8 (2)C21—C22—H22B109.5
C10—C9—C12112.4 (3)H22A—C22—H22B109.5
O3—C9—C11107.4 (2)C21—C22—H22C109.5
C10—C9—C11111.8 (3)H22A—C22—H22C109.5
C12—C9—C11106.9 (3)H22B—C22—H22C109.5
C9—C10—H10A109.5C21—C23—H23A109.5
C9—C10—H10B109.5C21—C23—H23B109.5
H10A—C10—H10B109.5H23A—C23—H23B109.5
C9—C10—H10C109.5C21—C23—H23C109.5
H10A—C10—H10C109.5H23A—C23—H23C109.5
H10B—C10—H10C109.5H23B—C23—H23C109.5
C9—C11—H11A109.5C21—C24—H24A109.5
C9—C11—H11B109.5C21—C24—H24B109.5
H11A—C11—H11B109.5H24A—C24—H24B109.5
C9—C11—H11C109.5C21—C24—H24C109.5
H11A—C11—H11C109.5H24A—C24—H24C109.5
H11B—C11—H11C109.5H24B—C24—H24C109.5
C9—C12—H12A109.5H1A—N1—H1B114 (3)
C9—C12—H12B109.5H1A—N1—H1C107 (3)
H12A—C12—H12B109.5H1B—N1—H1C112 (3)
C9—C12—H12C109.5H1A—N1—H1D106 (2)
H12A—C12—H12C109.5H1B—N1—H1D110 (3)
H12B—C12—H12C109.5H1C—N1—H1D109 (3)
O6—Si2—O4104.38 (10)H2E—N2—H2D108 (4)
O6—Si2—O5107.90 (11)H2E—N2—H2F103 (4)
O4—Si2—O5109.56 (10)H2D—N2—H2F105 (3)
O6—Si2—S2113.87 (8)H2E—N2—H2G113 (4)
O4—Si2—S2115.08 (8)H2D—N2—H2G116 (4)
O5—Si2—S2105.88 (7)H2F—N2—H2G111 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.903 (17)2.331 (18)3.223 (2)170 (2)
N1—H1B···S20.891 (17)2.334 (18)3.215 (2)169 (3)
N1—H1C···S10.899 (18)2.326 (19)3.219 (3)172 (3)
N1—H1D···O20.893 (17)2.49 (2)3.059 (3)122 (2)
N2—H2E···S2ii0.902 (19)2.38 (2)3.255 (3)162 (4)
N2—H2D···O30.877 (19)2.01 (2)2.886 (3)175 (4)
N2—H2D···S10.877 (19)2.95 (4)3.337 (3)109 (3)
N2—H2F···S20.897 (18)2.435 (19)3.323 (3)171 (3)
N2—H2G···O5ii0.867 (18)2.39 (3)2.952 (3)123 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2465).

References

  • Baranowska, K. (2007). Acta Cryst. E63, o2653–o2655.
  • Baranowska, K., Chojnacki, J., Becker, B. & Wojnowski, W. (2003). Acta Cryst. E59, o765–o766.
  • Baranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem.632, 1086–1090.
  • Baranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555–1560.
  • Baranowska, K., Chojnacki, J., Wojnowski, W. & Becker, B. (2003). Acta Cryst. E59, o2022–o2024.
  • Becker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620–621. [PubMed]
  • Becker, B., Pladzyk, A., Konitz, A. & Wojnowski, W. (2002). Appl. Organomet. Chem.16, 517–524.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Chojnacki, J. (2008). Polyhedron, 27, 969–976.
  • Dołęga, A., Pladzyk, A., Baranowska, K. & Wieczerzak, M. (2008). Inorg. Chem. Commun.11, 847–850.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Piękoś, R. & Wojnowski, W. (1962). Z. Anorg. Allg. Chem.318, 212–216.
  • Pladzyk, A. & Baranowska, K. (2007). Acta Cryst. E63, m1594.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wojnowski, W. (1971). Zesz. Nauk. Politech. Gdańsk. Chem.172, 1–42.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography