PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1203.
Published online 2008 June 7. doi:  10.1107/S1600536808016188
PMCID: PMC2961751

tert-Butyl 6-benzoyl-5-hydr­oxy-2-oxo-2H-chromene-4-carboxyl­ate

Abstract

In the title compound, C21H18O6, a previously unknown coumarin derivative, the benzoyl substitutent makes a dihedral angle of 53.80 (16)° with the plane of the coumarin rings. An intramolecular O—H(...)O hydrogen bond is observed.

Related literature

For related literature, see: Jurd et al. (1971 [triangle]); Kasinadhuni et al. (1999 [triangle]); Sardari et al. (1999 [triangle]); Soine (1964 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1203-scheme1.jpg

Experimental

Crystal data

  • C21H18O6
  • M r = 366.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1203-efi1.jpg
  • a = 22.1263 (12) Å
  • b = 7.3012 (4) Å
  • c = 22.5428 (12) Å
  • β = 103.118 (5)°
  • V = 3546.7 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 120 (2) K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (APEX2; Bruker, 2005 [triangle]) T min = 0.972, T max = 0.981
  • 18827 measured reflections
  • 4686 independent reflections
  • 3022 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.132
  • S = 1.00
  • 4686 reflections
  • 247 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016188/at2560sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016188/at2560Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful for the financial support of Mazandaran University of the Islamic Republic of Iran.

supplementary crystallographic information

Comment

The coumarin nucleus is incorporated in many biologically active compounds and natural products. Coumarin and its derivatives have been found to show a wide range of bioactivities such as anticoagulant, estrogenic, molluscacidal, hypothermic (Soine, 1964), antimicrobial (Jurd et al., 1971) anti-inflammatory, antifungal (Sardari et al., 1999) and antinuclear activities (Kasinadhuni et al., 1999). We have recently synthesized a series of 5-hydroxy and 7-hydroxy coumarins based on a direct, efficient and operationally convenient approach and we report here the synthesis and crystal structure of the title compound (I), which is one of the products of this reaction.

The molecular structure of (I) is illustrated in Fig 1. The inclinations of the planes of the t-butoxycarbonyl, hydroxy and benzoyl substitutents with respect to the coumarin ring system are 89.93, 3.15 and 53.80°, respectively. Dihedral angle between tert-butoxycarbonyl group and coumarin moiety is 89.97 (16)°. This deviation from the coumarin plane may be due to the steric repulsion between this bulky group and hydroxy group. Dihedral angle between hydroxy group and carbonyl of benzoyl group is -2.6 (2)°. Therefore, these groups are nearly coplanar and form an intramolecular O—H···O═C hydrogen bonding (Table 1). Dihedral angle between phenyl and carbonyl in benzoyl group is 132.65 (15)°.

Experimental

To a magnetically stirred solution of 2,4-dihydroxy benzophenone (0.43 g, 2 mmol) and triphenylphosphine (0.52 g, 2 mmol) in 10 ml CH2Cl2 was added dropwise at 263 K over 10 min ditert-butyl acetylenedicarboxylate (0.45 g, 2 mmol). The reaction mixture was then allowed to warm up to room temperature and stand for 48 h. The solvent was removed under reduced pressure and the residue was separated by silica gel column chromatography (Merck 230–400 mesh) using n-hexane–ethyl acetate as eluent. Yellow Oil, yield 75\%. 1H NMR (500 MHz, CDCl3): δ = 1.62 (9 H, s, CMe3), 6.27 (1 H, s, CH), 6.83 (1 H, d, 3JHH = 8.9 Hz, CH), 7.51-7.70 (5 H, m, CH, aromatic), 7.79 (1 H, d, 3JHH = 8.9 Hz, CH), 13.72 (1 H, s, OH). 13C NMR (125.7 MHz, CDCl3): δ = 28.00 (CMe3), 84.50 (CMe3), 106.42 (CH), 108.18 (C), 112.87, 114.84 (2 CH), 128.67, 129.06 and 132.49 (3 CH), 136.92, 137.09 and 146.10 (3 C), 159.11, 159.46 (2 C-O), 162.03 and 164.46 (2 C═O, ester), 200.78 (C═O, ketone). IR (KBr) (νmax /cm-1): 3300-3550 (OH), 1730-1740 (C═O, ketone), 1620-1640 (C═O, ester), 1400-1410 (C═C). MS, (m/z, %): 366 (5) (M+), 105 (36), 44 (100). Analysis calculated for C21H18O6: C 68.85, H 4.92 %. Found: C 68.80, H, 4.83%.

Refinement

The hydrogen atom of OH group was found in difference Fourier synthesis. The other hydrogen atoms were geometrically located to the ideal positions. All hydrogen atoms were refined by using a riding model, with C—H = 0.95 and 0.98 Å and O—H = 0.94 Å and Uiso(H) = 1.2 or 1.5 Ueq(C, O).

Figures

Fig. 1.
View of the title molecule showing the atomic numbering. Displacement ellipsoids are drawn at the 50° probability level for non-h atoms are shown as spheres of arbitrary radii.

Crystal data

C21H18O6F000 = 1536
Mr = 366.35Dx = 1.372 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 547 reflections
a = 22.1263 (12) Åθ = 3–29º
b = 7.3012 (4) ŵ = 0.10 mm1
c = 22.5428 (12) ÅT = 120 (2) K
β = 103.118 (5)ºPrism, yellow
V = 3546.7 (3) Å30.25 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4686 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 120(2) Kθmax = 29.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(APEX2; Bruker, 2005)h = −29→30
Tmin = 0.972, Tmax = 0.981k = −9→9
18827 measured reflectionsl = −30→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.132  w = 1/[σ2(Fo2) + (0.067P)2 + 0.9P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4686 reflectionsΔρmax = 0.39 e Å3
247 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.27083 (5)0.49509 (14)−0.00338 (4)0.0249 (2)
O20.31516 (5)0.40901 (17)−0.07737 (5)0.0333 (3)
O30.37885 (4)0.81605 (14)0.17284 (5)0.0250 (2)
H3O0.37360.86080.21040.030*
O40.47858 (5)0.59637 (15)0.13012 (5)0.0293 (3)
O50.45958 (5)0.87074 (14)0.08203 (5)0.0245 (2)
O60.32210 (5)0.86656 (15)0.25741 (5)0.0269 (3)
C10.32191 (7)0.4839 (2)−0.02871 (7)0.0261 (3)
C20.37934 (7)0.5618 (2)0.00649 (7)0.0263 (3)
H2A0.41570.5540−0.00910.032*
C30.38259 (7)0.6445 (2)0.06039 (7)0.0222 (3)
C40.32758 (6)0.66005 (19)0.08451 (6)0.0203 (3)
C50.32623 (6)0.74176 (19)0.14099 (6)0.0202 (3)
C60.27130 (7)0.74050 (19)0.16279 (6)0.0200 (3)
C70.21878 (7)0.6537 (2)0.12773 (7)0.0230 (3)
H7A0.18200.64890.14280.028*
C80.21862 (7)0.5753 (2)0.07237 (7)0.0230 (3)
H8A0.18220.51940.04890.028*
C90.27314 (7)0.57971 (19)0.05135 (6)0.0212 (3)
C100.44592 (7)0.7019 (2)0.09627 (6)0.0225 (3)
C110.52015 (7)0.9548 (2)0.11350 (7)0.0266 (3)
C120.51638 (9)1.1439 (2)0.08531 (8)0.0396 (4)
H12A0.51341.13280.04140.059*
H12B0.55371.21360.10390.059*
H12C0.47961.20750.09230.059*
C130.52297 (8)0.9669 (2)0.18124 (7)0.0300 (4)
H13A0.52500.84320.19850.045*
H13B0.48581.02920.18770.045*
H13C0.56001.03600.20130.045*
C140.57332 (7)0.8450 (3)0.09914 (8)0.0337 (4)
H14A0.57220.71990.11460.051*
H14B0.61280.90280.11860.051*
H14C0.56920.84150.05490.051*
C150.27236 (7)0.81611 (19)0.22348 (7)0.0215 (3)
C160.21450 (7)0.82855 (19)0.24640 (6)0.0218 (3)
C170.15998 (7)0.9054 (2)0.21202 (7)0.0241 (3)
H17A0.15860.94900.17200.029*
C180.10785 (7)0.9184 (2)0.23601 (7)0.0287 (4)
H18A0.07110.97340.21290.034*
C190.10947 (8)0.8505 (2)0.29417 (8)0.0307 (4)
H19A0.07340.85660.31030.037*
C200.16345 (8)0.7745 (2)0.32831 (7)0.0304 (4)
H20A0.16420.72760.36780.036*
C210.21615 (7)0.7663 (2)0.30550 (7)0.0258 (3)
H21A0.25360.71840.32990.031*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0239 (6)0.0288 (6)0.0212 (5)−0.0018 (4)0.0034 (4)−0.0046 (4)
O20.0328 (6)0.0417 (7)0.0253 (6)−0.0022 (5)0.0067 (5)−0.0105 (5)
O30.0198 (5)0.0303 (6)0.0236 (5)−0.0039 (4)0.0024 (4)−0.0052 (4)
O40.0232 (6)0.0287 (6)0.0339 (6)0.0006 (5)0.0018 (5)0.0046 (5)
O50.0233 (5)0.0248 (5)0.0244 (5)−0.0030 (4)0.0033 (4)0.0003 (4)
O60.0237 (6)0.0297 (6)0.0251 (6)−0.0004 (5)0.0007 (4)−0.0031 (5)
C10.0261 (8)0.0265 (8)0.0253 (8)0.0011 (6)0.0048 (6)0.0002 (6)
C20.0225 (8)0.0318 (8)0.0242 (8)0.0006 (6)0.0048 (6)−0.0014 (6)
C30.0214 (7)0.0207 (7)0.0236 (7)−0.0003 (6)0.0030 (6)0.0032 (6)
C40.0196 (7)0.0204 (7)0.0203 (7)−0.0003 (6)0.0036 (6)0.0007 (6)
C50.0198 (7)0.0169 (7)0.0226 (7)−0.0001 (5)0.0018 (6)0.0008 (5)
C60.0203 (7)0.0180 (7)0.0213 (7)0.0004 (5)0.0040 (6)0.0004 (5)
C70.0193 (7)0.0244 (8)0.0256 (8)0.0005 (6)0.0057 (6)0.0003 (6)
C80.0198 (7)0.0247 (8)0.0229 (7)−0.0042 (6)0.0014 (6)−0.0034 (6)
C90.0240 (8)0.0196 (7)0.0192 (7)0.0012 (6)0.0034 (6)−0.0004 (5)
C100.0221 (7)0.0266 (8)0.0202 (7)−0.0008 (6)0.0079 (6)−0.0011 (6)
C110.0239 (8)0.0295 (8)0.0251 (8)−0.0072 (6)0.0031 (6)−0.0032 (6)
C120.0504 (11)0.0321 (9)0.0331 (9)−0.0124 (8)0.0027 (8)0.0023 (7)
C130.0311 (9)0.0340 (9)0.0242 (8)−0.0032 (7)0.0051 (7)−0.0042 (7)
C140.0233 (8)0.0466 (10)0.0323 (9)−0.0071 (7)0.0086 (7)−0.0067 (8)
C150.0233 (7)0.0170 (7)0.0230 (7)0.0013 (6)0.0029 (6)0.0013 (6)
C160.0247 (8)0.0182 (7)0.0224 (7)−0.0002 (6)0.0051 (6)−0.0024 (6)
C170.0257 (8)0.0235 (8)0.0227 (7)0.0003 (6)0.0046 (6)−0.0026 (6)
C180.0245 (8)0.0267 (8)0.0338 (9)0.0009 (6)0.0045 (7)−0.0075 (7)
C190.0322 (9)0.0272 (8)0.0373 (9)−0.0055 (7)0.0174 (7)−0.0096 (7)
C200.0456 (10)0.0243 (8)0.0244 (8)−0.0047 (7)0.0143 (7)−0.0029 (6)
C210.0321 (8)0.0209 (7)0.0232 (7)0.0003 (6)0.0036 (6)−0.0019 (6)

Geometric parameters (Å, °)

O1—C91.3703 (17)C11—C131.517 (2)
O1—C11.3792 (18)C11—C141.518 (2)
O2—C11.2043 (18)C12—H12A0.9800
O3—C51.3363 (17)C12—H12B0.9800
O3—H3O0.9388C12—H12C0.9800
O4—C101.2032 (17)C13—H13A0.9800
O5—C101.3259 (18)C13—H13B0.9800
O5—C111.4980 (17)C13—H13C0.9800
O6—C151.2451 (17)C14—H14A0.9800
C1—C21.453 (2)C14—H14B0.9800
C2—C31.344 (2)C14—H14C0.9800
C2—H2A0.9500C15—C161.488 (2)
C3—C41.446 (2)C16—C171.395 (2)
C3—C101.510 (2)C16—C211.400 (2)
C4—C91.395 (2)C17—C181.384 (2)
C4—C51.412 (2)C17—H17A0.9500
C5—C61.411 (2)C18—C191.395 (2)
C6—C71.400 (2)C18—H18A0.9500
C6—C151.471 (2)C19—C201.382 (2)
C7—C81.372 (2)C19—H19A0.9500
C7—H7A0.9500C20—C211.378 (2)
C8—C91.393 (2)C20—H20A0.9500
C8—H8A0.9500C21—H21A0.9500
C11—C121.514 (2)
C9—O1—C1122.18 (11)C11—C12—H12A109.5
C5—O3—H3O110.8C11—C12—H12B109.5
C10—O5—C11119.65 (11)H12A—C12—H12B109.5
O2—C1—O1117.38 (14)C11—C12—H12C109.5
O2—C1—C2125.99 (15)H12A—C12—H12C109.5
O1—C1—C2116.63 (13)H12B—C12—H12C109.5
C3—C2—C1122.02 (14)C11—C13—H13A109.5
C3—C2—H2A119.0C11—C13—H13B109.5
C1—C2—H2A119.0H13A—C13—H13B109.5
C2—C3—C4119.89 (13)C11—C13—H13C109.5
C2—C3—C10117.50 (13)H13A—C13—H13C109.5
C4—C3—C10122.35 (12)H13B—C13—H13C109.5
C9—C4—C5117.94 (13)C11—C14—H14A109.5
C9—C4—C3117.63 (13)C11—C14—H14B109.5
C5—C4—C3124.33 (13)H14A—C14—H14B109.5
O3—C5—C6122.00 (13)C11—C14—H14C109.5
O3—C5—C4117.50 (13)H14A—C14—H14C109.5
C6—C5—C4120.49 (13)H14B—C14—H14C109.5
C7—C6—C5118.47 (13)O6—C15—C6120.52 (13)
C7—C6—C15122.08 (13)O6—C15—C16118.61 (13)
C5—C6—C15119.25 (13)C6—C15—C16120.84 (13)
C8—C7—C6122.19 (14)C17—C16—C21119.46 (14)
C8—C7—H7A118.9C17—C16—C15122.35 (13)
C6—C7—H7A118.9C21—C16—C15118.15 (13)
C7—C8—C9118.44 (13)C18—C17—C16120.18 (14)
C7—C8—H8A120.8C18—C17—H17A119.9
C9—C8—H8A120.8C16—C17—H17A119.9
O1—C9—C8115.97 (13)C17—C18—C19119.81 (15)
O1—C9—C4121.56 (13)C17—C18—H18A120.1
C8—C9—C4122.44 (13)C19—C18—H18A120.1
O4—C10—O5127.73 (14)C20—C19—C18120.06 (15)
O4—C10—C3120.85 (13)C20—C19—H19A120.0
O5—C10—C3111.30 (12)C18—C19—H19A120.0
O5—C11—C12102.51 (12)C21—C20—C19120.49 (14)
O5—C11—C13109.18 (12)C21—C20—H20A119.8
C12—C11—C13110.81 (13)C19—C20—H20A119.8
O5—C11—C14109.65 (12)C20—C21—C16119.93 (15)
C12—C11—C14111.31 (14)C20—C21—H21A120.0
C13—C11—C14112.87 (13)C16—C21—H21A120.0
C9—O1—C1—O2−179.04 (13)C5—C4—C9—C8−1.0 (2)
C9—O1—C1—C21.8 (2)C3—C4—C9—C8175.46 (13)
O2—C1—C2—C3179.48 (16)C11—O5—C10—O4−5.1 (2)
O1—C1—C2—C3−1.5 (2)C11—O5—C10—C3178.97 (11)
C1—C2—C3—C4−0.8 (2)C2—C3—C10—O4−86.24 (18)
C1—C2—C3—C10173.41 (14)C4—C3—C10—O487.86 (18)
C2—C3—C4—C92.8 (2)C2—C3—C10—O589.97 (16)
C10—C3—C4—C9−171.14 (13)C4—C3—C10—O5−95.93 (16)
C2—C3—C4—C5179.01 (14)C10—O5—C11—C12−178.97 (13)
C10—C3—C4—C55.0 (2)C10—O5—C11—C13−61.43 (17)
C9—C4—C5—O3179.06 (13)C10—O5—C11—C1462.70 (17)
C3—C4—C5—O32.9 (2)C7—C6—C15—O6168.75 (14)
C9—C4—C5—C60.3 (2)C5—C6—C15—O6−6.0 (2)
C3—C4—C5—C6−175.90 (13)C7—C6—C15—C16−9.3 (2)
O3—C5—C6—C7−177.56 (13)C5—C6—C15—C16175.93 (13)
C4—C5—C6—C71.2 (2)O6—C15—C16—C17132.22 (15)
O3—C5—C6—C15−2.6 (2)C6—C15—C16—C17−49.7 (2)
C4—C5—C6—C15176.11 (13)O6—C15—C16—C21−45.45 (19)
C5—C6—C7—C8−2.0 (2)C6—C15—C16—C21132.65 (15)
C15—C6—C7—C8−176.82 (14)C21—C16—C17—C18−0.6 (2)
C6—C7—C8—C91.4 (2)C15—C16—C17—C18−178.23 (13)
C1—O1—C9—C8−177.93 (13)C16—C17—C18—C19−1.5 (2)
C1—O1—C9—C40.2 (2)C17—C18—C19—C201.5 (2)
C7—C8—C9—O1178.28 (13)C18—C19—C20—C210.5 (2)
C7—C8—C9—C40.2 (2)C19—C20—C21—C16−2.6 (2)
C5—C4—C9—O1−178.97 (13)C17—C16—C21—C202.6 (2)
C3—C4—C9—O1−2.5 (2)C15—C16—C21—C20−179.65 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O60.941.722.5365 (15)143

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2560).

References

  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jurd, L., King, A. D. Jr & Mihara, K. (1971). Phytochemistry, 10, 2965–2970.
  • Kasinadhuni, V. R. R., Rajashekhar, G., Rajagopalan, R., Sharma, V. M., Krishna, C. V., Sairam, P., Prasad, G. S., Sadhukhan, S. & Rao, G. G. (1999). Fitoterapia, 70, 93–95.
  • Sardari, S., Mori, Y., Horita, K., Micetich, R. G., Nishibe, S. & Daneshtalab, M. (1999). Bioorg. Med. Chem.7, 1933–1940. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soine, T. O. (1964). J. Pharm. Sci.53, 231–264. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography