PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1245.
Published online 2008 June 7. doi:  10.1107/S1600536808016863
PMCID: PMC2961745

[(1S,2S,3R,4R)-3-Hydr­oxy-4,7,7-tri­methyl­bicyclo­[2.2.1]heptan-2-yl]methyl[(E)-3-(trimethyl­silyl)prop-2-enyl]selen­onium bromide

Abstract

The title compound, a seleno­nium bromide, C17H33OSeSi+·Br, was obtained from the reaction of enanti­omerically pure 4,7,7-trimethyl-2-methyl­selanylbicyclo­[2.2.1]heptan-3-ol and (3-bromopropen­yl)trimethyl­silane in acetone. Due to the chiral bicyclic substituent, the crystal structure is not centrosymmetric and has no symmetry plane, with four chiral C atoms in the cation. The asymmetric unit contains one seleno­nium cation and one bromide anion. C–H(...)Br and O–H(...)Br hydrogen bonds link the ions, forming a one-dimensional R-helical chain-like supra­molecular structure.

Related literature

For related literature, see: Li et al. (2005 [triangle]); Goodridge et al. (1988 [triangle]); Reich et al. (1975 [triangle]); Ye et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1245-scheme1.jpg

Experimental

Crystal data

  • C17H33OSeSi+·Br
  • M r = 440.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1245-efi1.jpg
  • a = 7.555 (2) Å
  • b = 10.023 (2) Å
  • c = 14.423 (3) Å
  • β = 101.29 (3)°
  • V = 1071.0 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.67 mm−1
  • T = 291 (2) K
  • 0.30 × 0.26 × 0.24 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.35, T max = 0.41
  • 4460 measured reflections
  • 3374 independent reflections
  • 1732 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.102
  • S = 1.07
  • 3374 reflections
  • 170 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.74 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1140 Friedel pairs
  • Flack parameter: 0.01 (2)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016863/im2070sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016863/im2070Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China for its financial support of projects 20332050 and 20572042

supplementary crystallographic information

Comment

Recently, an efficient asymmetric synthesis of cyclopropanes via camphor-derived sulfonium ylides was reported (Ye et al., 2002). Thus, we expected that camphor-derived selenonium ylides could be used in the highly enantioselective synthesis of cyclopropanes, epoxides and aziridines. First, the camphor-derived selenide (1) was prepared from commercially available D-camphor according to a literature method (Reich et al., 1975; Goodridge et al., 1988, and Li et al., 2005). Then compound (1) was reacted with (3-bromo-propenyl)-trimethylsilane (3) to give the selenonium salt (2). We performed the X-ray crystallographic analysis of (2) in order to elucidate the conformation and configuration.

The structural analysis shows that the selenonium ion of the title compound, (2) (Fig. 1), is not centrosymmetric and has no symmetry plane, showing the four chiral C atoms, C4, C5, C6, and C7, with the R, R, S, and S configuration preserved from the enatiomerically pure starting compound (1). The asymmetric unit contains one selenonium salt cation, and one bromide ion. In the crystal packing, the Br atom plays an important role, acting as a bridge linking neighboring molecules via C–H···Br and O–H···Br hydrogen bonds (O1—H1D···Br1, C5—H5···Br1ii, C11—H11c···Br1i, and C12—H12B···Br1ii; symmetry code i: x,-1 + y,z; ii: 1 - x,-1/2 + y, -z), forming a one dimensional R-helical chains-like structure along [010] axis (Fig. 2).

Experimental

A solution of 4,7,7-trimethyl-2-methylselanyl-bicyclo[2.2.1]heptan-3-ol (1) (2.4 g, 9.7 mmol) and (3-bromo-propenyl)-trimethylsilane (3) (1.9 g, 9.7 mmol) in acetone (5 mL) was stirred at 273 K. The solid was collected and washed with ethyl ether to afford the selenonium salt (2) in 91% yield. Single crystals of (2) were obtained by slow evaporation from 10 mL of a methanolic solution containing 50 mg (2).

Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.87 (10), and with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.96–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.
: View of the title compound, showing the labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity, except for H1D which is involved in hydrogen bonding.
Fig. 2.
: A view of the onedimensional R-helical chains along the [010] axis. H atoms have been omitted for clarity, except for H1D, H5, H11c, and H12B which are involved in hydrogen bonding.
Fig. 3.
: Reaction scheme.

Crystal data

C17H33OSeSi+·BrF000 = 452
Mr = 440.39Dx = 1.366 Mg m3
Monoclinic, P2(1)Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 895 reflections
a = 7.555 (2) Åθ = 2.1–24.5º
b = 10.023 (2) ŵ = 3.67 mm1
c = 14.423 (3) ÅT = 291 (2) K
β = 101.29 (3)ºBloc, colourless
V = 1071.0 (4) Å30.30 × 0.26 × 0.24 mm
Z = 2

Data collection

Bruker SMART Apex CCD diffractometer3374 independent reflections
Radiation source: sealed tube1732 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 291(2) Kθmax = 26.0º
phi and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −9→9
Tmin = 0.35, Tmax = 0.41k = 0→12
4460 measured reflectionsl = 0→17

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053  w = 1/[σ2(Fo2) + (0.046P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.64 e Å3
3374 reflectionsΔρmin = −0.74 e Å3
170 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1140 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.32321 (7)1.05851 (10)0.09364 (5)0.0584 (2)
C10.6248 (8)0.4347 (6)0.3285 (4)0.0404 (14)
H1A0.63350.34420.30790.061*
H1B0.53630.44000.36790.061*
H1C0.73990.46300.36370.061*
C20.7389 (6)0.5504 (10)0.2095 (4)0.0425 (13)
H2A0.81540.60830.25290.064*
H2B0.70850.59280.14880.064*
H2C0.80130.46830.20360.064*
C30.5706 (8)0.5219 (6)0.2454 (5)0.0498 (18)
C40.4232 (11)0.4559 (8)0.1682 (5)0.0445 (19)
H40.46150.37240.14280.053*
C50.3867 (6)0.5695 (8)0.0960 (4)0.0361 (12)
H50.48220.57100.05880.043*
C60.3996 (9)0.6917 (8)0.1552 (5)0.0398 (16)
H60.49630.74960.14220.048*
C70.4459 (9)0.6398 (7)0.2553 (4)0.0473 (15)
C80.2804 (6)0.5707 (9)0.2761 (4)0.0406 (14)
H8A0.17440.62640.25780.049*
H8B0.29550.54990.34280.049*
C90.2627 (8)0.4411 (7)0.2161 (5)0.0460 (15)
H9A0.27280.36190.25550.055*
H9B0.14990.43840.17040.055*
C100.5215 (9)0.7500 (7)0.3273 (5)0.047
H10A0.64070.77410.31960.071*
H10B0.52620.71750.39030.071*
H10C0.44440.82690.31660.071*
C110.2014 (9)0.3828 (7)−0.0510 (5)0.043
H11A0.30200.3955−0.08160.064*
H11B0.09710.3576−0.09700.064*
H11C0.22940.3137−0.00430.064*
C120.2030 (8)0.6908 (7)−0.0809 (4)0.0415 (15)
H12A0.16830.7780−0.06140.050*
H12B0.33100.6926−0.08200.050*
C130.0925 (8)0.6561 (7)−0.1810 (4)0.0430 (15)
H13−0.03220.6663−0.19180.052*
C140.1643 (8)0.6141 (6)−0.2502 (4)0.0385 (13)
H140.28930.6068−0.23950.046*
C15−0.0572 (9)0.3993 (7)−0.3683 (5)0.047
H15A−0.16960.4027−0.34680.071*
H15B0.02620.3436−0.32670.071*
H15C−0.07710.3631−0.43110.071*
C16−0.1393 (8)0.6949 (7)−0.4057 (5)0.041
H16A−0.20220.6764−0.46890.061*
H16B−0.08370.7813−0.40390.061*
H16C−0.22310.6937−0.36360.061*
C170.1943 (7)0.5796 (7)−0.4543 (4)0.049
H17A0.26310.4987−0.45220.073*
H17B0.27460.6536−0.43720.073*
H17C0.12590.5926−0.51710.073*
O10.2297 (6)0.7626 (5)0.1376 (3)0.0473 (11)
H1D0.248 (10)0.845 (8)0.125 (5)0.057*
Se10.15165 (6)0.54982 (7)0.01059 (4)0.04094 (15)
Si10.03564 (18)0.5673 (2)−0.36882 (11)0.0395 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0503 (3)0.0494 (4)0.0775 (5)−0.0034 (4)0.0172 (3)−0.0074 (5)
C10.043 (3)0.043 (4)0.040 (3)0.000 (3)0.020 (3)0.000 (3)
C20.031 (2)0.049 (3)0.043 (3)−0.012 (4)−0.0060 (19)−0.021 (5)
C30.038 (3)0.046 (4)0.053 (4)−0.019 (3)−0.020 (3)0.003 (3)
C40.059 (4)0.038 (4)0.034 (4)−0.005 (3)0.004 (3)0.008 (3)
C50.035 (2)0.037 (3)0.035 (3)0.019 (3)0.0062 (18)0.005 (3)
C60.034 (3)0.048 (4)0.040 (4)−0.005 (3)0.013 (3)0.003 (3)
C70.052 (3)0.047 (3)0.037 (4)0.001 (3)−0.003 (3)0.006 (3)
C80.042 (2)0.049 (4)0.035 (3)0.016 (3)0.017 (2)−0.009 (3)
C90.034 (3)0.046 (4)0.055 (4)−0.004 (3)0.004 (3)0.005 (3)
C100.0490.0490.0490.0000.0210.000
C110.0440.0440.0440.0000.0180.000
C120.039 (3)0.051 (4)0.036 (3)0.020 (3)0.012 (3)0.009 (3)
C130.045 (3)0.048 (4)0.033 (3)0.005 (3)0.002 (3)0.014 (3)
C140.044 (3)0.044 (3)0.029 (3)−0.004 (2)0.012 (2)−0.002 (3)
C150.0490.0490.0490.0000.0210.000
C160.0430.0430.0430.0000.0200.000
C170.0500.0500.0500.0000.0200.000
O10.046 (2)0.049 (3)0.038 (2)−0.010 (2)−0.0126 (19)0.003 (2)
Se10.0358 (2)0.0516 (3)0.0339 (3)0.0028 (4)0.00292 (19)0.0086 (4)
Si10.0420 (7)0.0402 (9)0.0380 (8)0.0077 (9)0.0119 (6)−0.0030 (10)

Geometric parameters (Å, °)

Br1—O13.143 (5)C10—H10B0.9600
C1—C31.475 (9)C10—H10C0.9600
C1—H1A0.9600C11—Se11.965 (7)
C1—H1B0.9600C11—H11A0.9600
C1—H1C0.9600C11—H11B0.9600
C2—C31.492 (8)C11—H11C0.9600
C2—H2A0.9600C12—C131.560 (9)
C2—H2B0.9600C12—Se12.022 (6)
C2—H2C0.9600C12—H12A0.9700
C3—C71.535 (9)C12—H12B0.9700
C3—C41.559 (9)C13—C141.295 (8)
C4—C91.515 (10)C13—H130.9300
C4—C51.531 (10)C14—Si11.855 (6)
C4—H40.9800C14—H140.9300
C5—C61.484 (10)C15—Si11.825 (7)
C5—Se11.963 (5)C15—H15A0.9600
C5—H50.9800C15—H15B0.9600
C6—O11.446 (8)C15—H15C0.9600
C6—C71.510 (9)C16—Si11.842 (7)
C6—H60.9800C16—H16A0.9600
C7—C81.510 (9)C16—H16B0.9600
C7—C101.546 (9)C16—H16C0.9600
C8—C91.552 (10)C17—Si11.884 (5)
C8—H8A0.9700C17—H17A0.9600
C8—H8B0.9700C17—H17B0.9600
C9—H9A0.9700C17—H17C0.9600
C9—H9B0.9700O1—H1D0.87 (8)
C10—H10A0.9600
C3—C1—H1A109.5C7—C10—H10A109.5
C3—C1—H1B109.5C7—C10—H10B109.5
H1A—C1—H1B109.5H10A—C10—H10B109.5
C3—C1—H1C109.5C7—C10—H10C109.5
H1A—C1—H1C109.5H10A—C10—H10C109.5
H1B—C1—H1C109.5H10B—C10—H10C109.5
C3—C2—H2A109.5Se1—C11—H11A109.5
C3—C2—H2B109.5Se1—C11—H11B109.5
H2A—C2—H2B109.5H11A—C11—H11B109.5
C3—C2—H2C109.5Se1—C11—H11C109.5
H2A—C2—H2C109.5H11A—C11—H11C109.5
H2B—C2—H2C109.5H11B—C11—H11C109.5
C1—C3—C2106.0 (5)C13—C12—Se1108.2 (4)
C1—C3—C7117.3 (6)C13—C12—H12A110.1
C2—C3—C7117.8 (6)Se1—C12—H12A110.1
C1—C3—C4112.0 (5)C13—C12—H12B110.1
C2—C3—C4111.8 (6)Se1—C12—H12B110.1
C7—C3—C491.6 (5)H12A—C12—H12B108.4
C9—C4—C5109.2 (6)C14—C13—C12123.8 (5)
C9—C4—C3103.9 (6)C14—C13—H13118.1
C5—C4—C3100.3 (5)C12—C13—H13118.1
C9—C4—H4114.0C13—C14—Si1124.7 (5)
C5—C4—H4114.0C13—C14—H14117.6
C3—C4—H4114.0Si1—C14—H14117.6
C6—C5—C4103.8 (5)Si1—C15—H15A109.5
C6—C5—Se1113.2 (4)Si1—C15—H15B109.5
C4—C5—Se1111.9 (5)H15A—C15—H15B109.5
C6—C5—H5109.3Si1—C15—H15C109.5
C4—C5—H5109.3H15A—C15—H15C109.5
Se1—C5—H5109.3H15B—C15—H15C109.5
O1—C6—C5110.4 (5)Si1—C16—H16A109.5
O1—C6—C7111.6 (5)Si1—C16—H16B109.5
C5—C6—C7104.1 (6)H16A—C16—H16B109.5
O1—C6—H6110.2Si1—C16—H16C109.5
C5—C6—H6110.2H16A—C16—H16C109.5
C7—C6—H6110.2H16B—C16—H16C109.5
C6—C7—C8107.5 (5)Si1—C17—H17A109.5
C6—C7—C3102.0 (5)Si1—C17—H17B109.5
C8—C7—C3102.2 (5)H17A—C17—H17B109.5
C6—C7—C10112.5 (6)Si1—C17—H17C109.5
C8—C7—C10114.0 (6)H17A—C17—H17C109.5
C3—C7—C10117.4 (5)H17B—C17—H17C109.5
C7—C8—C9105.0 (5)C6—O1—Br1105.8 (4)
C7—C8—H8A110.8C6—O1—H1D109 (5)
C9—C8—H8A110.8C5—Se1—C1198.0 (3)
C7—C8—H8B110.8C5—Se1—C1294.2 (3)
C9—C8—H8B110.8C11—Se1—C12102.9 (3)
H8A—C8—H8B108.8C15—Si1—C16112.8 (3)
C4—C9—C8100.5 (5)C15—Si1—C14111.2 (3)
C4—C9—H9A111.7C16—Si1—C14107.9 (3)
C8—C9—H9A111.7C15—Si1—C17110.9 (3)
C4—C9—H9B111.7C16—Si1—C17106.1 (3)
C8—C9—H9B111.7C14—Si1—C17107.6 (3)
H9A—C9—H9B109.4

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1D···Br10.87 (8)2.28 (8)3.143 (5)175 (7)
C5—H5···Br1i0.982.883.827 (5)164
C11—H11C···Br1ii0.962.943.874 (7)165
C12—H12B···Br1i0.972.973.855 (5)152

Symmetry codes: (i) −x+1, y−1/2, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2070).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Goodridge, R. J., Hambley, T. W., Hayes, R. K. & Ridley, D. D. (1988). J. Org. Chem.53, 2881–2889.
  • Li, X. L., Wang, Y. & Huang, Z. Z. (2005). Aust. J. Chem.58, 749–752.
  • Reich, H. J., Renga, J. M. & Reich, I. J. (1975). J. Am. Chem. Soc.97, 5434–5447.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ye, S., Huang, Z. Z., Xia, C. A., Tang, Y. & Dai, L. X. (2002). J. Am. Chem. Soc.124, 2432–2433. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography