PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m894.
Published online 2008 June 7. doi:  10.1107/S1600536808013627
PMCID: PMC2961740

Tetra­iodido[methyl­enebis(diphenyl­phosphine oxide)-κ2 O:O′]tin(IV) chloro­form solvate

Abstract

The title compound, [SnI4(C25H22O2P2)]·CHCl3, crystallized from a chloro­form solution of SnI4 and the diphosphine CH2(PPh2)2 exposed to air. The monomeric complex displays a distorted octa­hedral coordinaton for the tin(IV) atom with average Sn—I and Sn—O bond lengths of 2.79 (2) and 2.15 (1) Å, respectively.

Related literature

For examples of structurally characterized tin(IV)–halide complexes of phosphine oxide ligands, see: Genge et al. (1999 [triangle]); Davis et al. (2006a [triangle],b [triangle]); Mohamed et al. (2004 [triangle]). For related literature, see: Levason et al. (2003 [triangle]); Woollins (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m894-scheme1.jpg

Experimental

Crystal data

  • [SnI4(C25H22O2P2)]·CHCl3
  • M r = 1162.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m894-efi1.jpg
  • a = 9.2639 (5) Å
  • b = 19.0609 (11) Å
  • c = 10.1991 (6) Å
  • β = 108.479 (1)°
  • V = 1708.08 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.71 mm−1
  • T = 125 (2) K
  • 0.14 × 0.13 × 0.02 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.558, T max = 0.912
  • 20220 measured reflections
  • 7254 independent reflections
  • 6994 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.045
  • S = 1.03
  • 7254 reflections
  • 344 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.50 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3512 Friedel pairs
  • Flack parameter: 0.004 (14)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013627/wm2178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013627/wm2178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

Comment

Tin(IV) iodide may be readily prepared by oxidation of tin metal with iodine (Woollins, 2003). A relatively weak Lewis acid, SnI4 nevertheless forms complexes with phosphines and phosphine oxides (Genge et al., 1999; Davis et al., 2006a). Similar phosphine and phosphine oxide complexes have been reported of the more Lewis acidic tin(IV) halides, SnX4 (X = F, Cl, Br; Davis et al., 2006a, 2006b; Genge et al., 1999; Mohamed et al., 2004). The phosphine oxide complexes are chiefly obtained by air oxidation of the phosphine ligands in the presence of the tin(IV) halide (Levason et al., 2003).

Reaction of SnI4 with CH2(PPh2)2 in CHCl3 in the presence of air afforded the title complex [{CH2(P(O)Ph2)2}SnI4].CHCl3, (I).

Complex (I) exhibits a distorted octahedral coordination at tin. The bis(phosphine oxide) results in a cis coordination of the ligand, with Sn—O distances of 2.136 (3) and 2.157 (3) Å, and Sn—I distances of 2.7770 (4), 2.7805 (4), 2.7911 (4) and 2.8199 (4) Å. The smallest bond angle about the pseudooctahedral tin center, 81.1 (1)°, corresponds to the O1—Sn—O2 angle of the chelating bis(phosphine oxide) ligand, with the opposite I2—Sn—I3 angle in the SnO2I2 plane being the largest, 100.82 (1)°. These distances and angles are similar to those reported for the related bis(phosphine oxide) complex {o-C6H4(P(O)Ph2)2}SnI4 (Genge et al., 1999). The SnO2P2C six-membered heterocycle in complex (I) is in a distorted boat conformation.

Experimental

Complex (I) was prepared by treating a chloroform (ca 5 ml) solution of SnI4 (655 mg, 1.1 mmol) with an excess of CH2(PPh2)2 (922 mg, 2.6 mmol) in the presence of air. Suitable crystals for single crystal X-ray analysis formed within 1 week at room temperature. A small sample of crystals was separated for structural analysis, and the remaining crystals were collected by filtration on a glass frit, washed three times with ca 5 ml of chloroform, and dried briefly under vacuum (yield 659 mg (54%) of a red-orange product). Elemental analysis confirmed that the compound was obtained as the chloroform solvate: anal. calcd. for (I) C, 26.87%; H, 1.99%; N, 0.00%. Found C, 26.97%; H, 1.73%; N, <0.02%. (Elemental analysis performed by Robertson Microlit Laboratories, Madison, NJ, USA.)

Refinement

H atoms on carbon were included in calculated positions and were refined using a riding model with Uiso(H) = 1.2Ueq(C) of the parent atom.

Figures

Fig. 1.
A view of complex (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity.

Crystal data

[SnI4(C25H22O2P2)]·CHCl3F000 = 1076
Mr = 1162.02Dx = 2.259 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9838 reflections
a = 9.2639 (5) Åθ = 2.3–28.3º
b = 19.0609 (11) ŵ = 4.71 mm1
c = 10.1991 (6) ÅT = 125 (2) K
β = 108.479 (1)ºPlate, orange
V = 1708.08 (17) Å30.14 × 0.13 × 0.02 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer7254 independent reflections
Radiation source: fine-focus sealed tube6994 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 125(2) Kθmax = 26.7º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2007)h = −11→11
Tmin = 0.558, Tmax = 0.912k = −24→24
20220 measured reflectionsl = −12→12

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021  w = 1/[σ2(Fo2) + (0.0195P)2 + 0.2278P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.73 e Å3
7254 reflectionsΔρmin = −0.50 e Å3
344 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 3512 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.004 (14)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEX 2 CCD platform diffractometer. The data was cut off at 0.79 Å because data in the highest resolution range (0.75-0.78 Å) was very incomplete, acting to reduce the overall completeness to 99.4%. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008). One least squares restraint is required for the floating origin of space group P21. All non-hydrogen atoms were refined anisotropically. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. EXTI refined to zero and was removed from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn0.83582 (3)0.791335 (15)0.25375 (3)0.01631 (6)
I10.75473 (3)0.673729 (13)0.38291 (3)0.02340 (7)
I20.98608 (3)0.706487 (16)0.11538 (3)0.02731 (7)
I31.07128 (3)0.821230 (17)0.49436 (3)0.02768 (7)
I40.89066 (3)0.910079 (14)0.11840 (3)0.02389 (7)
P10.54635 (12)0.85261 (5)0.35831 (11)0.0155 (2)
P20.45533 (11)0.79067 (6)0.06921 (10)0.0162 (2)
O10.6960 (3)0.85997 (14)0.3271 (3)0.0178 (6)
O20.6235 (3)0.77647 (14)0.0902 (3)0.0166 (6)
C10.3884 (5)0.8709 (2)−0.0204 (4)0.0193 (9)
C20.2576 (5)0.9026 (3)−0.0116 (5)0.0329 (11)
H2A0.20420.88270.04500.039*
C30.2044 (6)0.9636 (3)−0.0854 (6)0.0420 (13)
H3A0.11510.9859−0.07890.050*
C40.2817 (7)0.9918 (3)−0.1683 (6)0.0487 (15)
H4A0.24531.0336−0.21870.058*
C50.4107 (6)0.9603 (3)−0.1788 (5)0.0372 (13)
H5A0.46250.9798−0.23710.045*
C60.4650 (5)0.9000 (3)−0.1042 (4)0.0272 (10)
H6A0.55510.8784−0.11020.033*
C70.3424 (5)0.7198 (2)−0.0266 (4)0.0187 (9)
C80.2165 (5)0.7324 (3)−0.1412 (4)0.0269 (10)
H8A0.18730.7791−0.16990.032*
C90.1332 (5)0.6761 (3)−0.2139 (4)0.0316 (11)
H9A0.04710.6843−0.29290.038*
C100.1755 (6)0.6084 (3)−0.1715 (5)0.0303 (11)
H10A0.11780.5701−0.22100.036*
C110.3025 (6)0.5957 (3)−0.0562 (5)0.0322 (11)
H11A0.33100.5490−0.02670.039*
C120.3863 (5)0.6516 (2)0.0146 (5)0.0253 (10)
H12A0.47440.64330.09180.030*
C130.4575 (5)0.9369 (2)0.3409 (4)0.0194 (9)
C140.3480 (5)0.9506 (2)0.4051 (5)0.0280 (10)
H14A0.32710.91660.46490.034*
C150.2702 (5)1.0132 (3)0.3818 (6)0.0341 (12)
H15A0.19501.02200.42490.041*
C160.3002 (6)1.0628 (2)0.2971 (5)0.0345 (12)
H16A0.24621.10590.28200.041*
C170.4098 (6)1.0500 (2)0.2331 (5)0.0320 (11)
H17A0.42971.08410.17320.038*
C180.4897 (5)0.9874 (2)0.2569 (5)0.0255 (10)
H18A0.56670.97920.21560.031*
C190.5743 (5)0.8157 (2)0.5259 (4)0.0181 (8)
C200.4710 (5)0.7703 (2)0.5528 (4)0.0218 (9)
H20A0.37600.76150.48410.026*
C210.5063 (5)0.7376 (2)0.6807 (4)0.0244 (10)
H21A0.43480.70690.69980.029*
C220.6457 (6)0.7497 (2)0.7807 (4)0.0285 (10)
H22A0.67040.72640.86740.034*
C230.7478 (5)0.7954 (2)0.7542 (4)0.0272 (10)
H23A0.84260.80380.82350.033*
C240.7148 (5)0.8295 (2)0.6282 (4)0.0255 (9)
H24A0.78530.86150.61100.031*
C250.4202 (4)0.7925 (2)0.2343 (4)0.0168 (8)
H25A0.43350.74470.27400.020*
H25B0.31330.80670.21920.020*
C260.1709 (7)0.5583 (3)0.3620 (5)0.0447 (14)
H26A0.08650.59240.32190.054*
Cl10.3366 (3)0.60552 (10)0.4432 (2)0.1039 (9)
Cl20.19826 (17)0.50905 (9)0.22600 (15)0.0518 (4)
Cl30.11844 (19)0.50376 (8)0.47642 (15)0.0522 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.01542 (13)0.01735 (13)0.01582 (13)0.00235 (11)0.00450 (10)0.00282 (10)
I10.02927 (16)0.01839 (14)0.02235 (14)0.00030 (12)0.00790 (12)0.00269 (11)
I20.03002 (16)0.03117 (15)0.02356 (14)0.01382 (13)0.01252 (12)0.00496 (13)
I30.01861 (14)0.03691 (17)0.02288 (14)−0.00201 (13)0.00001 (11)0.00444 (13)
I40.02432 (14)0.02220 (14)0.02621 (15)−0.00028 (12)0.00951 (12)0.00677 (11)
P10.0163 (5)0.0144 (5)0.0159 (5)−0.0010 (4)0.0053 (4)−0.0008 (4)
P20.0160 (5)0.0178 (5)0.0132 (5)0.0002 (5)0.0027 (4)0.0005 (4)
O10.0178 (14)0.0193 (15)0.0154 (14)−0.0023 (11)0.0041 (11)−0.0042 (11)
O20.0173 (14)0.0179 (15)0.0133 (13)0.0013 (11)0.0029 (11)0.0007 (11)
C10.024 (2)0.015 (2)0.016 (2)−0.0008 (17)0.0017 (17)0.0056 (16)
C20.021 (2)0.037 (3)0.038 (3)0.006 (2)0.006 (2)0.009 (2)
C30.035 (3)0.037 (3)0.050 (3)0.012 (2)0.006 (3)0.019 (3)
C40.037 (3)0.035 (3)0.060 (4)0.009 (2)−0.005 (3)0.023 (3)
C50.034 (3)0.036 (3)0.035 (3)−0.009 (2)0.003 (2)0.017 (2)
C60.020 (2)0.034 (3)0.024 (2)−0.001 (2)0.0028 (18)0.007 (2)
C70.018 (2)0.022 (2)0.0162 (19)−0.0016 (17)0.0069 (16)−0.0033 (17)
C80.029 (3)0.027 (2)0.021 (2)−0.006 (2)0.0034 (19)−0.0019 (18)
C90.030 (3)0.040 (3)0.018 (2)−0.006 (2)−0.0014 (19)0.000 (2)
C100.033 (3)0.033 (3)0.023 (2)−0.011 (2)0.005 (2)−0.007 (2)
C110.038 (3)0.025 (3)0.030 (3)−0.003 (2)0.006 (2)−0.002 (2)
C120.029 (3)0.023 (2)0.019 (2)−0.0035 (19)0.0013 (19)−0.0034 (18)
C130.017 (2)0.0147 (19)0.023 (2)0.0010 (16)0.0021 (17)−0.0006 (17)
C140.026 (2)0.020 (2)0.043 (3)−0.0018 (19)0.019 (2)−0.005 (2)
C150.026 (3)0.026 (3)0.058 (3)0.000 (2)0.025 (2)−0.008 (2)
C160.035 (3)0.016 (2)0.046 (3)0.006 (2)0.004 (2)−0.002 (2)
C170.040 (3)0.023 (2)0.033 (3)0.000 (2)0.012 (2)0.004 (2)
C180.030 (2)0.020 (2)0.026 (2)−0.0014 (19)0.010 (2)−0.0008 (18)
C190.025 (2)0.016 (2)0.0158 (19)0.0014 (17)0.0098 (17)−0.0028 (16)
C200.017 (2)0.025 (2)0.024 (2)−0.0006 (17)0.0089 (18)−0.0023 (17)
C210.028 (2)0.027 (2)0.023 (2)0.0009 (19)0.0145 (19)0.0016 (18)
C220.046 (3)0.027 (2)0.014 (2)0.005 (2)0.011 (2)0.0030 (18)
C230.032 (3)0.033 (3)0.015 (2)0.004 (2)0.0050 (18)−0.0048 (19)
C240.026 (2)0.026 (2)0.022 (2)−0.0040 (19)0.0036 (18)−0.0037 (19)
C250.0190 (19)0.0148 (18)0.0162 (19)−0.0010 (18)0.0048 (15)0.0025 (17)
C260.059 (4)0.027 (3)0.036 (3)−0.003 (3)−0.002 (3)0.010 (2)
Cl10.1176 (17)0.0573 (12)0.0806 (14)−0.0501 (12)−0.0484 (12)0.0197 (10)
Cl20.0441 (8)0.0688 (10)0.0441 (8)0.0007 (7)0.0161 (7)0.0017 (7)
Cl30.0719 (10)0.0461 (8)0.0415 (8)0.0182 (8)0.0221 (7)0.0119 (7)

Geometric parameters (Å, °)

Sn—O12.136 (3)C10—H10A0.9500
Sn—O22.157 (3)C11—C121.379 (6)
Sn—I32.7770 (4)C11—H11A0.9500
Sn—I42.7805 (4)C12—H12A0.9500
Sn—I22.7911 (4)C13—C181.383 (6)
Sn—I12.8199 (4)C13—C141.395 (6)
P1—O11.524 (3)C14—C151.375 (7)
P1—C131.788 (4)C14—H14A0.9500
P1—C191.790 (4)C15—C161.366 (7)
P1—C251.828 (4)C15—H15A0.9500
P2—O21.527 (3)C16—C171.392 (7)
P2—C11.788 (4)C16—H16A0.9500
P2—C71.795 (4)C17—C181.383 (6)
P2—C251.814 (4)C17—H17A0.9500
C1—C21.383 (6)C18—H18A0.9500
C1—C61.388 (6)C19—C201.381 (6)
C2—C31.389 (7)C19—C241.411 (6)
C2—H2A0.9500C20—C211.387 (6)
C3—C41.378 (8)C20—H20A0.9500
C3—H3A0.9500C21—C221.388 (6)
C4—C51.372 (8)C21—H21A0.9500
C4—H4A0.9500C22—C231.375 (7)
C5—C61.382 (7)C22—H22A0.9500
C5—H5A0.9500C23—C241.385 (6)
C6—H6A0.9500C23—H23A0.9500
C7—C81.386 (6)C24—H24A0.9500
C7—C121.387 (6)C25—H25A0.9900
C8—C91.391 (6)C25—H25B0.9900
C8—H8A0.9500C26—Cl31.742 (6)
C9—C101.377 (7)C26—Cl11.746 (6)
C9—H9A0.9500C26—Cl21.758 (6)
C10—C111.397 (7)C26—H26A1.0000
O1—Sn—O281.11 (10)C9—C10—H10A119.8
O1—Sn—I387.62 (7)C11—C10—H10A119.8
O2—Sn—I3168.16 (7)C12—C11—C10119.4 (4)
O1—Sn—I484.36 (8)C12—C11—H11A120.3
O2—Sn—I489.34 (7)C10—C11—H11A120.3
I3—Sn—I493.196 (12)C11—C12—C7120.2 (4)
O1—Sn—I2170.71 (7)C11—C12—H12A119.9
O2—Sn—I290.68 (7)C7—C12—H12A119.9
I3—Sn—I2100.824 (13)C18—C13—C14119.5 (4)
I4—Sn—I291.247 (12)C18—C13—P1120.3 (3)
O1—Sn—I192.43 (8)C14—C13—P1120.1 (3)
O2—Sn—I186.79 (7)C15—C14—C13120.0 (4)
I3—Sn—I190.070 (12)C15—C14—H14A120.0
I4—Sn—I1175.320 (14)C13—C14—H14A120.0
I2—Sn—I191.431 (12)C16—C15—C14120.6 (4)
O1—P1—C13108.51 (18)C16—C15—H15A119.7
O1—P1—C19111.71 (18)C14—C15—H15A119.7
C13—P1—C19111.74 (19)C15—C16—C17120.0 (4)
O1—P1—C25109.74 (17)C15—C16—H16A120.0
C13—P1—C25108.71 (19)C17—C16—H16A120.0
C19—P1—C25106.37 (19)C18—C17—C16119.9 (4)
O2—P2—C1113.34 (18)C18—C17—H17A120.1
O2—P2—C7109.60 (18)C16—C17—H17A120.1
C1—P2—C7108.48 (19)C13—C18—C17120.0 (4)
O2—P2—C25110.39 (17)C13—C18—H18A120.0
C1—P2—C25108.8 (2)C17—C18—H18A120.0
C7—P2—C25105.94 (19)C20—C19—C24120.3 (4)
P1—O1—Sn135.20 (17)C20—C19—P1122.4 (3)
P2—O2—Sn136.45 (16)C24—C19—P1117.0 (3)
C2—C1—C6119.7 (4)C19—C20—C21119.7 (4)
C2—C1—P2120.7 (3)C19—C20—H20A120.1
C6—C1—P2119.6 (3)C21—C20—H20A120.1
C1—C2—C3119.9 (5)C20—C21—C22120.3 (4)
C1—C2—H2A120.0C20—C21—H21A119.8
C3—C2—H2A120.0C22—C21—H21A119.8
C4—C3—C2119.7 (5)C23—C22—C21119.9 (4)
C4—C3—H3A120.2C23—C22—H22A120.1
C2—C3—H3A120.2C21—C22—H22A120.1
C5—C4—C3120.8 (5)C22—C23—C24121.1 (4)
C5—C4—H4A119.6C22—C23—H23A119.5
C3—C4—H4A119.6C24—C23—H23A119.5
C4—C5—C6119.7 (5)C23—C24—C19118.7 (4)
C4—C5—H5A120.1C23—C24—H24A120.7
C6—C5—H5A120.1C19—C24—H24A120.7
C5—C6—C1120.2 (4)P2—C25—P1113.0 (2)
C5—C6—H6A119.9P2—C25—H25A109.0
C1—C6—H6A119.9P1—C25—H25A109.0
C8—C7—C12120.3 (4)P2—C25—H25B109.0
C8—C7—P2121.2 (3)P1—C25—H25B109.0
C12—C7—P2118.4 (3)H25A—C25—H25B107.8
C7—C8—C9119.5 (4)Cl3—C26—Cl1112.4 (3)
C7—C8—H8A120.2Cl3—C26—Cl2110.5 (3)
C9—C8—H8A120.2Cl1—C26—Cl2108.9 (4)
C10—C9—C8120.0 (4)Cl3—C26—H26A108.3
C10—C9—H9A120.0Cl1—C26—H26A108.3
C8—C9—H9A120.0Cl2—C26—H26A108.3
C9—C10—C11120.4 (4)
C13—P1—O1—Sn−154.2 (2)C9—C10—C11—C12−0.5 (8)
C19—P1—O1—Sn82.2 (3)C10—C11—C12—C71.6 (7)
C25—P1—O1—Sn−35.5 (3)C8—C7—C12—C11−1.7 (7)
O2—Sn—O1—P154.1 (2)P2—C7—C12—C11179.9 (4)
I3—Sn—O1—P1−122.2 (2)O1—P1—C13—C1824.9 (4)
I4—Sn—O1—P1144.3 (2)C19—P1—C13—C18148.5 (4)
I1—Sn—O1—P1−32.3 (2)C25—P1—C13—C18−94.4 (4)
C1—P2—O2—Sn97.2 (3)O1—P1—C13—C14−159.1 (3)
C7—P2—O2—Sn−141.4 (2)C19—P1—C13—C14−35.5 (4)
C25—P2—O2—Sn−25.1 (3)C25—P1—C13—C1481.6 (4)
O1—Sn—O2—P2−16.7 (2)C18—C13—C14—C151.7 (7)
I3—Sn—O2—P21.4 (6)P1—C13—C14—C15−174.3 (4)
I4—Sn—O2—P2−101.1 (2)C13—C14—C15—C16−0.7 (8)
I2—Sn—O2—P2167.6 (2)C14—C15—C16—C170.3 (8)
I1—Sn—O2—P276.2 (2)C15—C16—C17—C18−0.9 (8)
O2—P2—C1—C2−159.9 (3)C14—C13—C18—C17−2.3 (7)
C7—P2—C1—C278.1 (4)P1—C13—C18—C17173.7 (3)
C25—P2—C1—C2−36.7 (4)C16—C17—C18—C131.9 (7)
O2—P2—C1—C622.7 (4)O1—P1—C19—C20−144.0 (3)
C7—P2—C1—C6−99.3 (4)C13—P1—C19—C2094.2 (4)
C25—P2—C1—C6145.9 (3)C25—P1—C19—C20−24.3 (4)
C6—C1—C2—C3−0.5 (7)O1—P1—C19—C2430.0 (4)
P2—C1—C2—C3−177.9 (4)C13—P1—C19—C24−91.8 (4)
C1—C2—C3—C40.6 (8)C25—P1—C19—C24149.7 (3)
C2—C3—C4—C50.1 (9)C24—C19—C20—C21−0.6 (6)
C3—C4—C5—C6−0.8 (9)P1—C19—C20—C21173.2 (3)
C4—C5—C6—C10.9 (8)C19—C20—C21—C22−0.8 (7)
C2—C1—C6—C5−0.3 (7)C20—C21—C22—C231.5 (7)
P2—C1—C6—C5177.1 (4)C21—C22—C23—C24−0.6 (7)
O2—P2—C7—C8−130.5 (4)C22—C23—C24—C19−0.8 (7)
C1—P2—C7—C8−6.3 (4)C20—C19—C24—C231.4 (6)
C25—P2—C7—C8110.4 (4)P1—C19—C24—C23−172.7 (3)
O2—P2—C7—C1247.8 (4)O2—P2—C25—P152.7 (3)
C1—P2—C7—C12172.0 (3)C1—P2—C25—P1−72.2 (3)
C25—P2—C7—C12−71.3 (4)C7—P2—C25—P1171.3 (2)
C12—C7—C8—C90.8 (7)O1—P1—C25—P2−27.7 (3)
P2—C7—C8—C9179.1 (3)C13—P1—C25—P290.8 (3)
C7—C8—C9—C100.3 (7)C19—P1—C25—P2−148.7 (2)
C8—C9—C10—C11−0.5 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2178).

References

  • Bruker (2007). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Davis, M. F., Clarke, M., Levason, W., Reid, G. & Webster, M. (2006a). Eur. J. Inorg. Chem. pp. 2773–2782.
  • Davis, M. F., Levason, W., Reid, G. & Webster, M. (2006b). Polyhedron, 25, 930–936.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Genge, A. R. J., Levason, W. & Reid, G. (1999). Inorg. Chim. Acta, 288, 142–149.
  • Levason, W., Patel, R. & Reid, G. (2003). J. Organomet. Chem.688, 280–282.
  • Mohamed, E. M., Panchanatheswaran, K., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, m172–m173. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Woollins, J. D. (2003). Inorganic Experiments: Second, Completely Revised and Enlarged Edition, edited by J. D. Woollins, pp. 36–37. Weinheim: Wiley.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography