PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m971–m972.
Published online 2008 June 28. doi:  10.1107/S1600536808018849
PMCID: PMC2961738

Poly[tris­(μ4-5-amino­isophthalato)diaqua­dilanthanum(III)]

Abstract

The title compound, [La2(C8H5NO4)3(H2O)2]n, is a three-dimensional network coordination polymer in which each LaIII ion is nine-coordinated by eight carboxyl­ate O atoms from six 5-amino­isophthalate ligands and one O atom from a water mol­ecule. One organic ligand lies on a twofold rotation axis. O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds are observed in the crystal structure.

Related literature

For related literature on metal carboxyl­ate complexes, see: Eddaoudi et al. (2002 [triangle]); Tao et al. (2000 [triangle]); Zheng et al. (2004 [triangle]). For related literature on aromatic polycarboxylic acids, see: Eddaoudi et al. (2000 [triangle]); Li et al. (1999 [triangle]); Lo et al. (2000 [triangle]); Qu et al. (2005 [triangle]); Rosi et al. (2002 [triangle]). For the coordination modes of lanthanides, see: Bond et al. (2000 [triangle]); Saleh et al. (1998 [triangle]). For bond length and angle data, see: Glunnlaugson et al. (2004 [triangle]); Zheng et al. (2003 [triangle]); Drew et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m971-scheme1.jpg

Experimental

Crystal data

  • [La2(C8H5NO4)3(H2O)2]
  • M r = 851.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m971-efi3.jpg
  • a = 12.2525 (3) Å
  • b = 8.0521 (2) Å
  • c = 25.6820 (6) Å
  • V = 2533.74 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.41 mm−1
  • T = 100.0 (1) K
  • 0.36 × 0.31 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.313, T max = 0.822
  • 68438 measured reflections
  • 7718 independent reflections
  • 6892 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.074
  • S = 1.16
  • 7718 reflections
  • 208 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.54 e Å−3
  • Δρmin = −1.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018849/ci2610sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018849/ci2610Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral fellowship.

supplementary crystallographic information

Comment

In recent years, interest has been focused on metal carboxylate complexes due to their potential applications as material for molecular recognition, ion exchange, catalysis and luminescence (Eddaoudi et al., 2002; Tao et al., 2000; Zheng et al., 2004). Aromatic polycarboxylic acids such as 1,4-benzenedicarboxylic acid and 1,3-benzenedicarboxylic acid are used extensively in the synthesis of this type of coordination polymer (Eddaoudi et al., 2000; Li et al., 1999; Lo et al., 2000; Qu et al., 2005; Rosi et al., 2002).

Aminoisophthalic acid is a potential multidentate ligand with trifunctional group that may generate structures of higher dimensions containing networks or channels. It's two carboxylic groups may be completely or partially deprotonated and thus results in versatile coordination modes. Meanwhile, lanthanide ions are known for their ability to display diverse coordination modes and high coordination number (Bond et al., 2000; Saleh et al., 1998). In addition to that, hard acid lanthanide ions prefer to coordinate with carboxyl groups belonging to hard base. In this paper, we report the crystal structure of a polymeric coordination complex formed from hydrothermal reaction between trivalent lanthanum ion and aminoisophthalic acid.

In the crystal structure of the title compound, each LaIII ion is nine-coordinated by eight carboxylate O atoms from six 5-aminoisophthalate ligands and one O atom from a water molecule. The La—O bond lengths [2.4076 (11) Å-2.8015 (12) Å] and bond angles around the LaIII ion agree well with the values reported for related lanthanum complexes (Glunnlaugson et al., 2004; Zheng et al., 2003; Drew et al., 2000).

The O—H···O, O—H···N and N—H···O hydrogen bonds are observed in the crystal structure (Fig. 2).

Experimental

A mixture of 5-aminoisophthalic acid (0.273 g, 1.5 mmol), sodium hydroxide (0.120 g, 3 mmol) and distilled water (20 ml) was heated till boiling. The solution was left to cool and then poured into a 40 ml Teflon tube with La(NO3).6H2O (0.433 g, 1.0 mmol). The Teflon tube was sealed and heated at 403 K for 60 h, and then allowed to cool to room temperature. Pale clear-pink crystals obtained were filtered, washed with distilled water and left to dry in air (yield: 52% based on La).

Refinement

H atoms of the water molecule were located initially in a difference Fourier map and then constrained to ride on the parent O atom, with O-H = 0.84 Å and Uiso(H) = 0.018 Å2. The amino H atoms were located in a difference map and were refined with a N-H distance restraint of 0.85 (1) or 0.90 (1) Å. The remaining H atoms were positioned geometrically [C-H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The highest residual density peak is located 0.61 Å from La1 and the deepest hole is located 0.57 Å from La1.

Figures

Fig. 1.
Part of the three-dimensional coordination polymer, showing the coordination environment of the LaIII ion. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (A) 1/2-x, -1/2+y, z; (B) 1/2+x, 1/2-y, -z; (C) -x, 1-y, -z.]
Fig. 2.
A view of part of the coordination polymer of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[La2(C8H5NO4)3(H2O)2]F000 = 1640
Mr = 851.24Dx = 2.221 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9864 reflections
a = 12.2525 (3) Åθ = 2.3–45.2º
b = 8.0521 (2) ŵ = 3.41 mm1
c = 25.6820 (6) ÅT = 100.0 (1) K
V = 2533.74 (11) Å3Plate, pink
Z = 40.36 × 0.31 × 0.06 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer7718 independent reflections
Radiation source: fine-focus sealed tube6892 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 100.0(1) Kθmax = 40.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −22→21
Tmin = 0.313, Tmax = 0.822k = −14→14
68438 measured reflectionsl = −45→44

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074  w = 1/[σ2(Fo2) + (0.0368P)2 + 1.5159P] where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.001
7718 reflectionsΔρmax = 1.54 e Å3
208 parametersΔρmin = −1.24 e Å3
5 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
La10.305761 (5)0.465168 (9)0.094499 (3)0.00725 (3)
O10.11915 (9)0.55822 (16)0.09118 (5)0.01427 (19)
O20.29520 (8)0.76545 (14)0.14936 (5)0.01260 (17)
O30.36750 (11)0.54193 (13)0.18450 (5)0.0161 (2)
O40.03641 (8)0.77482 (13)0.12749 (5)0.01283 (17)
O5−0.11694 (8)0.16092 (13)−0.01083 (4)0.01261 (17)
O6−0.27525 (9)0.27524 (13)−0.03252 (4)0.01193 (16)
O1W0.48255 (8)0.60804 (14)0.07751 (5)0.01474 (18)
H1OW0.51150.63130.04880.018*
H2OW0.53090.61450.10090.018*
N1−0.35537 (11)0.53130 (17)0.15151 (6)0.0164 (2)
N20.50001.2332 (3)0.25000.0265 (5)
C1−0.16182 (11)0.57505 (17)0.13169 (6)0.0116 (2)
H1−0.15440.64210.16100.014*
C2−0.26282 (11)0.50210 (18)0.12013 (6)0.0117 (2)
C3−0.27434 (10)0.40880 (17)0.07446 (6)0.0112 (2)
H3−0.34260.36920.06470.013*
C4−0.18356 (10)0.37549 (16)0.04371 (6)0.0102 (2)
C5−0.08197 (11)0.44158 (16)0.05646 (6)0.0108 (2)
H5−0.02090.41550.03650.013*
C6−0.07239 (11)0.54677 (16)0.09915 (6)0.0100 (2)
C70.03462 (10)0.63224 (16)0.10726 (6)0.01037 (19)
C80.35819 (11)0.69799 (17)0.18250 (6)0.0111 (2)
C90.42765 (11)0.80015 (16)0.21813 (6)0.0114 (2)
C100.42555 (12)0.97334 (16)0.21897 (6)0.0123 (2)
H100.37471.03030.19890.015*
C110.50001.0623 (3)0.25000.0135 (3)
C120.50000.7136 (2)0.25000.0124 (3)
H120.50000.59810.25000.015*
C13−0.19263 (10)0.26435 (17)−0.00240 (6)0.0099 (2)
H1N1−0.399 (2)0.443 (2)0.1564 (11)0.023 (7)*
H1N20.5414 (19)1.281 (3)0.2714 (9)0.028 (7)*
H2N1−0.342 (2)0.571 (3)0.1839 (6)0.018 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La10.00651 (4)0.00736 (4)0.00789 (4)−0.00013 (2)0.00015 (2)−0.00035 (2)
O10.0076 (4)0.0187 (5)0.0165 (5)0.0020 (3)0.0003 (3)−0.0007 (4)
O20.0128 (4)0.0130 (4)0.0120 (5)0.0016 (3)−0.0042 (3)0.0008 (3)
O30.0223 (5)0.0101 (4)0.0160 (5)0.0014 (3)−0.0076 (4)−0.0013 (3)
O40.0122 (4)0.0111 (4)0.0153 (5)−0.0026 (3)−0.0004 (3)−0.0009 (3)
O50.0127 (4)0.0129 (4)0.0122 (5)0.0030 (3)−0.0022 (3)−0.0024 (3)
O60.0107 (4)0.0133 (4)0.0118 (5)0.0004 (3)−0.0025 (3)−0.0001 (3)
O1W0.0108 (4)0.0170 (5)0.0163 (5)−0.0029 (3)0.0008 (3)0.0023 (4)
N10.0108 (5)0.0231 (6)0.0153 (6)−0.0028 (4)0.0031 (4)−0.0054 (4)
N20.0457 (13)0.0095 (7)0.0244 (11)0.000−0.0211 (10)0.000
C10.0093 (5)0.0122 (5)0.0133 (6)−0.0010 (3)0.0002 (4)−0.0023 (4)
C20.0098 (5)0.0130 (5)0.0123 (6)−0.0006 (4)0.0004 (4)−0.0012 (4)
C30.0098 (4)0.0119 (5)0.0120 (6)−0.0009 (3)−0.0003 (4)−0.0010 (4)
C40.0109 (5)0.0092 (5)0.0104 (6)−0.0003 (3)−0.0007 (4)−0.0009 (4)
C50.0102 (4)0.0107 (5)0.0114 (6)−0.0003 (3)−0.0001 (4)−0.0004 (4)
C60.0086 (5)0.0095 (5)0.0120 (6)−0.0004 (3)−0.0008 (4)−0.0002 (4)
C70.0088 (4)0.0114 (5)0.0109 (5)−0.0007 (3)−0.0011 (4)0.0010 (4)
C80.0119 (5)0.0113 (5)0.0101 (5)0.0013 (3)−0.0021 (4)−0.0015 (4)
C90.0133 (5)0.0108 (5)0.0102 (5)0.0003 (3)−0.0032 (4)−0.0008 (4)
C100.0164 (5)0.0093 (5)0.0113 (6)0.0018 (3)−0.0036 (4)−0.0004 (4)
C110.0190 (8)0.0098 (7)0.0116 (8)0.000−0.0038 (6)0.000
C120.0144 (7)0.0098 (7)0.0129 (8)0.000−0.0046 (6)0.000
C130.0106 (5)0.0100 (5)0.0093 (5)−0.0003 (3)−0.0004 (4)−0.0001 (4)

Geometric parameters (Å, °)

La1—O12.4076 (11)N1—H2N10.91 (1)
La1—O2i2.4701 (11)N2—C111.377 (3)
La1—O1W2.4912 (10)N2—H1N20.84 (1)
La1—O32.5093 (12)C1—C61.397 (2)
La1—O5ii2.5585 (11)C1—C21.4016 (19)
La1—O4i2.6089 (10)C1—H10.93
La1—O6iii2.6538 (11)C2—C31.400 (2)
La1—O6ii2.6955 (11)C3—C41.3902 (19)
La1—O22.8015 (12)C3—H30.93
O1—C71.2643 (18)C4—C51.3927 (18)
O2—C81.2708 (17)C4—C131.489 (2)
O2—La1iv2.4701 (11)C5—C61.390 (2)
O3—C81.2628 (17)C5—H50.93
O4—C71.2604 (17)C6—C71.4953 (18)
O4—La1iv2.6089 (10)C8—C91.4961 (19)
O5—C131.2651 (17)C9—C121.3933 (17)
O5—La1v2.5585 (11)C9—C101.3949 (19)
O6—C131.2771 (17)C10—C111.4071 (18)
O6—La1iii2.6538 (11)C10—H100.93
O6—La1v2.6955 (11)C11—C10vi1.4071 (18)
O1W—H1OW0.84C12—C9vi1.3933 (17)
O1W—H2OW0.84C12—H120.93
N1—C21.411 (2)C13—La1v3.0017 (14)
N1—H1N10.90 (1)
O1—La1—O2i75.36 (4)C2—N1—H1N1115.5 (19)
O1—La1—O1W132.52 (4)C2—N1—H2N1116.3 (18)
O2i—La1—O1W146.72 (4)H1N1—N1—H2N1105 (2)
O1—La1—O3104.02 (4)C11—N2—H1N2117 (2)
O2i—La1—O377.64 (4)C6—C1—C2119.84 (13)
O1W—La1—O377.61 (4)C6—C1—H1120.1
O1—La1—O5ii116.44 (4)C2—C1—H1120.1
O2i—La1—O5ii113.96 (4)C3—C2—C1119.43 (12)
O1W—La1—O5ii73.40 (4)C3—C2—N1119.13 (12)
O3—La1—O5ii139.45 (4)C1—C2—N1121.25 (13)
O1—La1—O4i153.93 (4)C4—C3—C2119.92 (12)
O2i—La1—O4i78.67 (3)C4—C3—H3120.0
O1W—La1—O4i71.56 (4)C2—C3—H3120.0
O3—La1—O4i67.80 (4)C3—C4—C5120.51 (13)
O5ii—La1—O4i76.42 (4)C3—C4—C13120.55 (11)
O1—La1—O6iii66.41 (4)C5—C4—C13118.91 (12)
O2i—La1—O6iii141.66 (3)C6—C5—C4119.58 (13)
O1W—La1—O6iii69.74 (4)C6—C5—H5120.2
O3—La1—O6iii113.64 (3)C4—C5—H5120.2
O5ii—La1—O6iii82.01 (4)C5—C6—C1120.32 (12)
O4i—La1—O6iii139.64 (3)C5—C6—C7117.66 (12)
O1—La1—O6ii81.54 (4)C1—C6—C7121.98 (12)
O2i—La1—O6ii71.63 (4)O4—C7—O1123.35 (13)
O1W—La1—O6ii123.26 (4)O4—C7—C6119.47 (12)
O3—La1—O6ii146.29 (3)O1—C7—C6117.12 (12)
O5ii—La1—O6ii49.86 (3)O3—C8—O2120.49 (13)
O4i—La1—O6ii92.45 (3)O3—C8—C9118.09 (12)
O6iii—La1—O6ii99.18 (3)O2—C8—C9121.33 (12)
O1—La1—O272.86 (4)O3—C8—La155.20 (8)
O2i—La1—O2104.59 (4)O2—C8—La168.49 (8)
O1W—La1—O274.31 (4)C9—C8—La1157.57 (9)
O3—La1—O248.55 (3)C12—C9—C10120.17 (13)
O5ii—La1—O2141.45 (3)C12—C9—C8116.50 (12)
O4i—La1—O2112.21 (3)C10—C9—C8123.28 (13)
O6iii—La1—O267.38 (3)C9—C10—C11120.37 (14)
O6ii—La1—O2154.13 (3)C9—C10—H10119.8
C7—O1—La1155.94 (10)C11—C10—H10119.8
C8—O2—La1iv164.67 (10)N2—C11—C10120.59 (9)
C8—O2—La186.55 (8)N2—C11—C10vi120.59 (9)
La1iv—O2—La1107.35 (4)C10—C11—C10vi118.81 (18)
C8—O3—La1100.39 (9)C9vi—C12—C9119.99 (18)
C7—O4—La1iv114.46 (9)C9vi—C12—H12120.0
C13—O5—La1v97.67 (9)C9—C12—H12120.0
C13—O6—La1iii121.94 (9)O5—C13—O6121.52 (13)
C13—O6—La1v90.94 (8)O5—C13—C4118.50 (12)
La1iii—O6—La1v105.27 (4)O6—C13—C4119.99 (12)
La1—O1W—H1OW128.6O5—C13—La1v57.64 (7)
La1—O1W—H2OW120.9O6—C13—La1v63.88 (8)
H1OW—O1W—H2OW108.3C4—C13—La1v175.99 (9)
O2i—La1—O1—C781.4 (3)La1—O3—C8—O221.93 (16)
O1W—La1—O1—C7−77.4 (3)La1—O3—C8—C9−154.83 (11)
O3—La1—O1—C78.5 (3)La1iv—O2—C8—O3−174.7 (3)
O5ii—La1—O1—C7−168.8 (2)La1—O2—C8—O3−19.25 (14)
O4i—La1—O1—C776.4 (3)La1iv—O2—C8—C91.9 (5)
O6iii—La1—O1—C7−101.5 (3)La1—O2—C8—C9157.41 (13)
O6ii—La1—O1—C7154.5 (3)La1iv—O2—C8—La1−155.5 (4)
O2—La1—O1—C7−29.2 (3)O1—La1—C8—O3120.56 (10)
C13ii—La1—O1—C7172.0 (3)O2i—La1—C8—O345.09 (10)
C8—La1—O1—C7−13.0 (3)O1W—La1—C8—O3−104.47 (10)
O1—La1—O2—C8138.62 (9)O5ii—La1—C8—O3−97.27 (11)
O2i—La1—O2—C869.33 (7)O4i—La1—C8—O3−33.35 (10)
O1W—La1—O2—C8−76.18 (9)O6iii—La1—C8—O3−173.07 (10)
O3—La1—O2—C810.99 (8)O6ii—La1—C8—O358.48 (19)
O5ii—La1—O2—C8−110.23 (9)O2—La1—C8—O3159.76 (15)
O4i—La1—O2—C8−14.18 (9)C13ii—La1—C8—O3−82.2 (2)
O6iii—La1—O2—C8−150.35 (9)O1—La1—C8—O2−39.20 (9)
O6ii—La1—O2—C8147.23 (9)O2i—La1—C8—O2−114.68 (7)
C13ii—La1—O2—C8−148.28 (9)O1W—La1—C8—O295.77 (9)
O1—La1—O2—La1iv−47.98 (4)O3—La1—C8—O2−159.76 (15)
O2i—La1—O2—La1iv−117.27 (6)O5ii—La1—C8—O2102.97 (9)
O1W—La1—O2—La1iv97.22 (5)O4i—La1—C8—O2166.88 (8)
O3—La1—O2—La1iv−175.61 (7)O6iii—La1—C8—O227.17 (8)
O5ii—La1—O2—La1iv63.17 (6)O6ii—La1—C8—O2−101.28 (16)
O4i—La1—O2—La1iv159.22 (4)C13ii—La1—C8—O2118.03 (17)
O6iii—La1—O2—La1iv23.04 (4)O1—La1—C8—C9−159.9 (3)
O6ii—La1—O2—La1iv−39.37 (10)O2i—La1—C8—C9124.7 (3)
C13ii—La1—O2—La1iv25.12 (10)O1W—La1—C8—C9−24.9 (2)
C8—La1—O2—La1iv173.40 (11)O3—La1—C8—C979.6 (3)
O1—La1—O3—C8−62.50 (10)O5ii—La1—C8—C9−17.7 (3)
O2i—La1—O3—C8−133.75 (10)O4i—La1—C8—C946.2 (3)
O1W—La1—O3—C868.68 (10)O6iii—La1—C8—C9−93.5 (3)
O5ii—La1—O3—C8113.71 (10)O6ii—La1—C8—C9138.1 (2)
O4i—La1—O3—C8143.60 (11)O2—La1—C8—C9−120.7 (3)
O6iii—La1—O3—C87.57 (11)C13ii—La1—C8—C9−2.6 (4)
O6ii—La1—O3—C8−158.30 (8)O3—C8—C9—C121.7 (2)
O2—La1—O3—C8−11.23 (8)O2—C8—C9—C12−175.02 (12)
C13ii—La1—O3—C8152.93 (9)La1—C8—C9—C12−64.5 (3)
C6—C1—C2—C3−3.4 (2)O3—C8—C9—C10179.15 (15)
C6—C1—C2—N1−178.49 (14)O2—C8—C9—C102.4 (2)
C1—C2—C3—C46.3 (2)La1—C8—C9—C10112.9 (2)
N1—C2—C3—C4−178.49 (14)C12—C9—C10—C113.2 (2)
C2—C3—C4—C5−3.4 (2)C8—C9—C10—C11−174.17 (12)
C2—C3—C4—C13174.65 (13)C9—C10—C11—N2178.42 (11)
C3—C4—C5—C6−2.5 (2)C9—C10—C11—C10vi−1.58 (11)
C13—C4—C5—C6179.43 (13)C10—C9—C12—C9vi−1.58 (11)
C4—C5—C6—C15.4 (2)C8—C9—C12—C9vi175.93 (14)
C4—C5—C6—C7−172.14 (13)La1v—O5—C13—O60.96 (15)
C2—C1—C6—C5−2.4 (2)La1v—O5—C13—C4−178.75 (10)
C2—C1—C6—C7174.99 (13)La1iii—O6—C13—O5−109.60 (13)
La1iv—O4—C7—O129.15 (18)La1v—O6—C13—O5−0.90 (14)
La1iv—O4—C7—C6−147.91 (10)La1iii—O6—C13—C470.10 (15)
La1—O1—C7—O442.8 (3)La1v—O6—C13—C4178.80 (11)
La1—O1—C7—C6−140.0 (2)La1iii—O6—C13—La1v−108.70 (8)
C5—C6—C7—O4147.88 (14)C3—C4—C13—O5−138.65 (14)
C1—C6—C7—O4−29.6 (2)C5—C4—C13—O539.5 (2)
C5—C6—C7—O1−29.36 (19)C3—C4—C13—O641.6 (2)
C1—C6—C7—O1153.14 (14)C5—C4—C13—O6−140.26 (14)

Symmetry codes: (i) −x+1/2, y−1/2, z; (ii) x+1/2, −y+1/2, −z; (iii) −x, −y+1, −z; (iv) −x+1/2, y+1/2, z; (v) x−1/2, −y+1/2, −z; (vi) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1OW···O5iv0.842.022.8354 (16)164
O1W—H2OW···N1vii0.842.022.817 (2)157
N1—H1N1···O4viii0.90 (1)2.28 (2)3.0929 (17)150 (3)
N2—H1N2···O4ix0.84 (1)2.60 (2)3.1953 (12)129 (2)

Symmetry codes: (iv) −x+1/2, y+1/2, z; (vii) x+1, y, z; (viii) −x−1/2, y−1/2, z; (ix) x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2610).

References

  • Bond, D. L., Clark, D. L., Donohoe, R. J., Gordon, J. C., Gordon, P. L., Keogh, D. W., Scott, B. L., Tait, C. D. & Watkin, J. G. (2000). Inorg. Chem.39, 3934–3937. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Drew, M. G. B., Hudson, M. J., Iveson, P. B., Madic, C. & Russel, M. L. (2000). J. Chem. Soc. Dalton Trans. pp. 2711–2720.
  • Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wochter, J., OKeeffe, M. & Yaghi, O. (2002). Mater. Sci.295, 469–472. [PubMed]
  • Eddaoudi, M., Li, H. & Yaghi, O. M. (2000). J. Am. Chem. Soc.122, 1391–1397.
  • Glunnlaugson, T., Leonard, J. P., Mulready, S. & Nieuwenhuyzen, M. (2004). Tetrahedron, 60, 105–113.
  • Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.
  • Lo, S. M. F., Chui, S. S. Y., Shek, L. Y., Lin, Z., Zhang, X. X., Wen, G. H. & Williams, I. D. (2000). J. Am. Chem. Soc.122, 6293–6294.
  • Qu, Y. L., Ke, Y. X., Lu, S. M., Fan, R., Pan, G. Q. & Li, J. M. (2005). J. Mol. Struct.734, 7–13.
  • Rosi, N. L., Eddaoudi, M., Kim, J., O’Keeffe, M. & Yaghi, O. M. (2002). Angew. Chem.41, 284–287. [PubMed]
  • Saleh, M. I., Salhin, A., Saad, B., Zain, S. M., Rahman, N. A. & Ariffin, Z. (1998). J. Mol. Struct.448, 63–68.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tao, J., Tong, M. L., Shi, J. X., Chen, X. M. & Ng, S. W. (2000). Chem. Commun. pp. 2043–2044.
  • Zheng, X.-J. & Jin, L.-P. (2003). Polyhedron, 22, 2617–2624.
  • Zheng, S. L., Yang, J. H., Yu, X. L., Chen, X. M. & Wong, W. T. (2004). Inorg. Chem.43, 830–838. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography