PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1297.
Published online 2008 June 19. doi:  10.1107/S1600536808018217
PMCID: PMC2961736

3-(4-Chloro­phenyl­diazen­yl)-1-methyl-1,4,5,6-tetra­hydro­pyridine

Abstract

The title compound, C12H14ClN3, represents the planar azoenamine tautomer. The benzene ring forms a dihedral angle of 2.5 (1)° with the azoenamine group. Electron delocalization is indicated by the values of the bond lengths in the chain. The tetra­hydro­pyridine ring adopts a half-chair conformation and the dihedral angle between the least-squares plane defined by the five coplanar C atoms and the azoenamine unit is 2.0 (1)°, while the envelope-flap C atom lies out of this plane by 0.579 (2) Å. The mol­ecular packing is governed by van der Waals inter­actions through the stacking of adjacent mol­ecules, resulting in a two-dimensional sheet structure.

Related literature

Aryl­azoenamines are useful templates for the investigation of the role of substituents on the benzene ring in the treatment of aryl­hydrazones with acids (Canu Boido et al., 1993 [triangle]). For related literature, see: Boido Canu et al. (1988 [triangle]); Sparatore et al. (1990 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1297-scheme1.jpg

Experimental

Crystal data

  • C12H14ClN3
  • M r = 235.71
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1297-efi1.jpg
  • a = 6.251 (2) Å
  • b = 8.483 (3) Å
  • c = 11.824 (4) Å
  • α = 77.590 (10)°
  • β = 78.450 (10)°
  • γ = 87.01 (2)°
  • V = 599.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 293 (2) K
  • 0.6 × 0.5 × 0.4 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 3028 measured reflections
  • 2893 independent reflections
  • 1803 reflections with I > 2σ(I)
  • R int = 0.014
  • 3 standard reflections frequency: 120 min intensity decay: <1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.191
  • S = 1.04
  • 2893 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018217/fj2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018217/fj2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In order to define the influence exerted by the chloro-benzene nucleus on the yields of azoenamines, the hydrazone-hydrazoene tautomerism has been investigated by X-ray analysis of the derivative 1 (Fig. 1). The results could be an useful tool to understand the antimicrobial properties of arylazoenamine compounds (Canu Boido et al., 1993). As this compound could resonate with the amphoionic structure, the X-ray analysis allowed the identification of the tautomer (Fig. 2). The extended conformation of the azoenamine skeleton is characterized by the torsion angles N3—C8—C7—N2 of 179.2 (1)°, C8—C7—N2—N1 of 179.2 (1)°, C7—N2—N1—C5 of 179.0 (1)° and N2—N1—C5—C4 of 176.9 (1)°, indicating the quite coplanarity of the aromatic ring with the azoenamine moiety. This allows a certain degree of electron delocalization, beginning at the phenyl moiety and extending through the double bond, as shown by the shortening of the bond lenghts N2—C7 of 1.361 (4)Å and C8—N3 of 1.361 (4) Å. The half chair conformation of the tetrahydropyridine ring is defined by the puckering parameter of [var phi]2=173.3 (1)° and QT=0.426 (4)Å (Cremer & Pople, 1975). The molecular packing is governed by the van der Waals interactions through the stacking of adjacent molecules, resulting in a two-dimesional sheet structure (Fig. 3).

Experimental

The title compound derives from the azo-coupling reaction with acids between 2-formyl-1-methylpyrrolidine and p-chlorophenylhydrazine (Canu Boido et al., 1993). Single crystal of 1 were obtained by slow evaporation of an ethanol solution.

Refinement

All non-H-atoms were refined anisotropically. Hydrogen atoms were introduced at calculated positions, in their described geometries and allowed to ride on the attached carbon atom with fixed isotropic thermal parameters (1.2Ueq and 1.5Ueq of the parent carbon atom for aromatic H-atoms and methyls H-atoms, respectively). The methyl H-atoms were placed with the AFIX 33 to prevent the rotational refinement.

Figures

Fig. 1.
: Chemical scheme of the two tautomers of 1.
Fig. 2.
: The molecular structure of the title compound, showing atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
Fig. 3.
: Packing diagram of 1, showing the two-dimensional sheet structure formed by the molecular stacking.

Crystal data

C12H14ClN3Z = 2
Mr = 235.71F000 = 248
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.251 (2) ÅCell parameters from 25 reflections
b = 8.483 (3) Åθ = 9–10º
c = 11.824 (4) ŵ = 0.30 mm1
α = 77.590 (10)ºT = 293 (2) K
β = 78.450 (10)ºPrism, red
γ = 87.01 (2)º0.6 × 0.5 × 0.4 mm
V = 599.9 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.014
Radiation source: fine-focus sealed tubeθmax = 28.0º
Monochromator: graphiteθmin = 3.9º
T = 293(2) Kh = −8→8
Non–profiled ω/2θ scansk = −11→10
Absorption correction: nonel = −15→0
3028 measured reflections3 standard reflections
2893 independent reflections every 120 min
1803 reflections with I > 2σ(I) intensity decay: <1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.191  w = 1/[σ2(Fo2) + (0.117P)2 + 0.0064P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2893 reflectionsΔρmax = 0.33 e Å3
146 parametersΔρmin = −0.49 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.62912 (9)0.77463 (8)0.36467 (7)0.0818 (3)
N10.1713 (3)0.4296 (2)0.18348 (17)0.0586 (5)
N20.2811 (3)0.3554 (2)0.26078 (17)0.0577 (5)
N30.7609 (3)0.1111 (2)0.27394 (19)0.0677 (6)
C1−0.3925 (3)0.6722 (2)0.3139 (2)0.0592 (6)
C2−0.0779 (3)0.5151 (3)0.3523 (2)0.0630 (6)
H20.00760.46260.40520.076*
C3−0.3383 (4)0.6673 (3)0.1976 (2)0.0670 (6)
H3−0.42740.71750.14590.080*
C4−0.1496 (4)0.5873 (3)0.1563 (2)0.0631 (6)
H4−0.11170.58470.07660.076*
C5−0.0155 (3)0.5106 (2)0.2336 (2)0.0562 (5)
C6−0.2651 (3)0.5964 (3)0.3933 (2)0.0645 (6)
H6−0.30470.60020.47280.077*
C70.4609 (3)0.2732 (2)0.2171 (2)0.0585 (6)
C80.5789 (3)0.1961 (3)0.2987 (2)0.0600 (6)
H80.52860.20360.37690.072*
C90.5288 (4)0.2646 (3)0.0908 (2)0.0698 (6)
H9A0.60380.36290.04710.084*
H9B0.40070.25520.05810.084*
C100.6793 (5)0.1200 (4)0.0783 (3)0.0841 (8)
H10A0.59290.02250.10140.101*
H10B0.74920.1302−0.00390.101*
C110.8530 (4)0.1044 (3)0.1526 (3)0.0780 (8)
H11A0.93060.00270.15040.094*
H11B0.95740.19080.11940.094*
C120.8856 (4)0.0404 (3)0.3635 (3)0.0819 (8)
H12A0.80630.05310.43940.123*
H12B1.02370.09360.34670.123*
H12C0.9096−0.07240.36370.123*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0537 (4)0.0776 (5)0.1070 (6)0.0248 (3)−0.0085 (3)−0.0163 (4)
N10.0465 (9)0.0571 (10)0.0711 (12)0.0101 (7)−0.0116 (8)−0.0129 (9)
N20.0441 (9)0.0510 (9)0.0756 (12)0.0059 (7)−0.0095 (8)−0.0111 (8)
N30.0461 (9)0.0618 (11)0.0926 (15)0.0147 (8)−0.0137 (10)−0.0136 (10)
C10.0427 (10)0.0480 (11)0.0835 (17)0.0082 (8)−0.0106 (10)−0.0101 (10)
C20.0450 (11)0.0723 (14)0.0733 (16)0.0150 (10)−0.0188 (10)−0.0154 (11)
C30.0579 (12)0.0606 (13)0.0815 (17)0.0182 (10)−0.0213 (12)−0.0102 (12)
C40.0609 (13)0.0565 (12)0.0695 (14)0.0132 (10)−0.0151 (11)−0.0089 (10)
C50.0435 (10)0.0486 (11)0.0755 (15)0.0036 (8)−0.0115 (10)−0.0116 (10)
C60.0494 (11)0.0736 (14)0.0701 (14)0.0142 (10)−0.0117 (10)−0.0176 (11)
C70.0439 (10)0.0527 (11)0.0768 (15)0.0064 (9)−0.0087 (10)−0.0131 (10)
C80.0459 (10)0.0569 (12)0.0748 (14)0.0070 (9)−0.0118 (10)−0.0101 (10)
C90.0559 (12)0.0736 (15)0.0780 (16)0.0154 (11)−0.0117 (11)−0.0170 (12)
C100.0721 (16)0.0881 (19)0.096 (2)0.0231 (14)−0.0126 (14)−0.0356 (16)
C110.0522 (13)0.0751 (16)0.106 (2)0.0177 (11)−0.0069 (13)−0.0291 (15)
C120.0600 (14)0.0723 (16)0.111 (2)0.0158 (12)−0.0264 (14)−0.0085 (14)

Geometric parameters (Å, °)

Cl1—C11.743 (2)C6—H60.9300
N1—N21.289 (3)C7—C81.366 (3)
N1—C51.414 (3)C7—C91.484 (4)
N2—C71.363 (3)C8—H80.9300
N3—C81.331 (3)C9—C101.521 (3)
N3—C111.447 (3)C9—H9A0.9700
N3—C121.448 (3)C9—H9B0.9700
C1—C31.358 (4)C10—C111.512 (4)
C1—C61.383 (3)C10—H10A0.9700
C2—C61.383 (3)C10—H10B0.9700
C2—C51.388 (4)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.385 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.398 (3)C12—H12C0.9600
C4—H40.9300
N2—N1—C5112.81 (19)N3—C8—H8117.8
N1—N2—C7115.1 (2)C7—C8—H8117.8
C8—N3—C11119.8 (2)C7—C9—C10110.2 (2)
C8—N3—C12121.7 (2)C7—C9—H9A109.6
C11—N3—C12118.06 (19)C10—C9—H9A109.6
C3—C1—C6121.5 (2)C7—C9—H9B109.6
C3—C1—Cl1119.29 (18)C10—C9—H9B109.6
C6—C1—Cl1119.2 (2)H9A—C9—H9B108.1
C6—C2—C5121.1 (2)C11—C10—C9112.6 (2)
C6—C2—H2119.5C11—C10—H10A109.1
C5—C2—H2119.5C9—C10—H10A109.1
C1—C3—C4119.7 (2)C11—C10—H10B109.1
C1—C3—H3120.2C9—C10—H10B109.1
C4—C3—H3120.2H10A—C10—H10B107.8
C3—C4—C5120.5 (2)N3—C11—C10111.89 (19)
C3—C4—H4119.7N3—C11—H11A109.2
C5—C4—H4119.7C10—C11—H11A109.2
C2—C5—C4118.33 (19)N3—C11—H11B109.2
C2—C5—N1125.3 (2)C10—C11—H11B109.2
C4—C5—N1116.3 (2)H11A—C11—H11B107.9
C2—C6—C1118.9 (2)N3—C12—H12A109.5
C2—C6—H6120.6N3—C12—H12B109.5
C1—C6—H6120.6H12A—C12—H12B109.5
N2—C7—C8115.1 (2)N3—C12—H12C109.5
N2—C7—C9124.0 (2)H12A—C12—H12C109.5
C8—C7—C9120.91 (19)H12B—C12—H12C109.5
N3—C8—C7124.5 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2123).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Boido Canu, C., Boido, V., Sparatore, F., Sparatore, A., Susanna, V., Russo, S., Canicola, M. L. & Marmo, E. (1988). Farmaco Ed. Sci.43, 819–837. [PubMed]
  • Canu Boido, C., Boido, V., Sparatore, F., Sparatore, A., Bombieri, G., Benetollo, F., Debbia, E. & Pesce Schito, A. (1993). Il Farmaco, 48, 749–775. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sparatore, A., Canu Boido, C., Boido, V., Sparatore, F., Debbia, E. & Pesce Schito, A. (1990). Il Farmaco, 45, 867–877. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography