PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m864.
Published online 2008 June 7. doi:  10.1107/S1600536808016140
PMCID: PMC2961732

Aquadi-n-but­yl(5-methyl­pyrazine-2-carboxyl­ato)tin(IV) methanol solvate

Abstract

In the monomeric title compound, [Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH3OH, the Sn atom is seven-coordinate, displaying a distorted penta­gonal bipyramidal SnC2N2O3 geometry with the two C atoms in the axial sites. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the complex and solvent mol­ecules into infinite chains.

Related literature

For general background, see: Gielen et al. (1988 [triangle]). For a related structure, see: Ma et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m864-scheme1.jpg

Experimental

Crystal data

  • [Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4O
  • M r = 557.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m864-efi1.jpg
  • a = 20.609 (5) Å
  • b = 17.119 (4) Å
  • c = 14.558 (3) Å
  • β = 98.178 (3)°
  • V = 5084 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.05 mm−1
  • T = 298 (2) K
  • 0.58 × 0.56 × 0.49 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.582, T max = 0.628
  • 12959 measured reflections
  • 4462 independent reflections
  • 2981 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.122
  • S = 1.12
  • 4462 reflections
  • 289 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016140/hb2726sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016140/hb2726Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Science Foundation of Shandong.

supplementary crystallographic information

Comment

Self-assembled organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen et al., 1988). 2-Methylpyrazine-5-carboxylic acid is a good bridging ligand that can sometimes be used to generate unexpected and interesting coordination polymers, and small changes in experimental conditions can lead to very different architectures.

The title compound, (I), consists of two butyl, two N,O-bidentate 2-methylpyrazine-5-carboxylate groups and a water molecule bonded to the Sn atom and has a monomeric structure. The Sn atom is seven-coordinate with a distorted pentagonal bipyramidal SnC2N2O3 geometry (Table 1, Fig. 1). Around the central Sn atom, atoms C13 and C17 of the two butyl groups occupy the axial position, while O and N atoms lie in equatorial positions. The sum of the angles between the tin atom and the equatorial atoms is 360.4°. The axial bond angle C17—Sn1—C13 [161.6 (3)°] deviates from linearity by over 18°, which shows that these atoms have significant deviations from ideal pentagonal bipyramidal geometry. Otherwise, the bond lenghts and angles in (I) are similar to those in related structures (Ma et al., 2004).

In the crystal, strong intermolecular O—H···O hydrogen bonds (Table 2) between O atoms of the carboxyl groups, methanol and coordinate water molecules result in the formation of one-dimensional polymeric chains (Fig. 2).

Experimental

A mixture of dibutyltin dichloride (1.0 mmol, 0.304 g), 2-methylpyrazine-5-carboxylic acid (2.0 mmol, 0.276 g) and sodium ethoxide (0.136 g, 2.0 mmol) in ethanol (with 5% water) (80 ml) was heated under reflux for 8 h at 303 K. The resulting clear solution was evaporated under vacuum and the product recrystallized from a mixture of methanol to yield colourless, blocks of (I). Yield 0.452 g, 78%, m.p. 438 K, analysis, calculated for C21H34N4O6Sn: C 45.26, H, 6.15; N 10.05%; found: C 45.39, H 6.29, N, 10.12%.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å, O—H = 0.82–0.85 Å) and refined as riding with Uiso(H) = 1.2Ueq(C/O) or 1.5Ueq(methyl C)

Figures

Fig. 1.
The molecular structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The hydrogen bond is indicated by a double-dashed line.
Fig. 2.
Packing diagram of the crystal structure of (I), showing the one-dimensional chains that form along the c axis. H atoms are omitted for clarity and dashed lines link the donor and acceptor O atoms of the hydrogen bonds.

Crystal data

[Sn(C4H9)2(C6H5N2O2)2(H2O)]·CH4OF000 = 2288
Mr = 557.21Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4606 reflections
a = 20.609 (5) Åθ = 2.4–25.3º
b = 17.119 (4) ŵ = 1.05 mm1
c = 14.558 (3) ÅT = 298 (2) K
β = 98.178 (3)ºBlock, colourless
V = 5084 (2) Å30.58 × 0.56 × 0.49 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer4462 independent reflections
Radiation source: fine-focus sealed tube2981 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 298(2) Kθmax = 25.0º
ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −15→24
Tmin = 0.582, Tmax = 0.628k = −20→20
12959 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.0455P)2 + 11.2132P] where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
4462 reflectionsΔρmax = 0.58 e Å3
289 parametersΔρmin = −0.67 e Å3
12 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.256428 (17)1.005653 (19)0.41391 (2)0.05022 (15)
N10.3679 (2)0.9489 (2)0.4509 (3)0.0496 (10)
N20.4975 (2)0.9001 (3)0.4682 (4)0.0746 (15)
N30.1453 (2)1.0475 (3)0.4696 (3)0.0597 (12)
N40.0240 (3)1.1105 (4)0.4929 (4)0.0858 (17)
O10.30863 (18)1.0137 (2)0.2956 (2)0.0579 (9)
O20.4017 (2)1.0160 (3)0.2351 (3)0.0784 (12)
O30.18771 (19)1.0558 (2)0.3031 (3)0.0673 (11)
O40.09289 (19)1.1052 (3)0.2392 (3)0.0757 (12)
O50.26009 (19)0.9499 (2)0.5931 (3)0.0736 (11)
H10.23270.91350.59830.088*
H20.27300.96470.64840.088*
C10.3704 (3)1.0012 (3)0.2976 (4)0.0529 (13)
C20.4039 (3)0.9618 (3)0.3833 (4)0.0513 (13)
C30.4686 (3)0.9380 (4)0.3940 (4)0.0679 (16)
H30.49320.94910.34670.082*
C40.4612 (3)0.8866 (3)0.5350 (4)0.0620 (15)
C50.3965 (3)0.9124 (3)0.5273 (4)0.0591 (14)
H50.37270.90420.57620.071*
C60.4918 (3)0.8426 (4)0.6191 (4)0.090 (2)
H6A0.53640.83000.61290.135*
H6B0.46770.79530.62500.135*
H6C0.49100.87430.67330.135*
C70.1295 (3)1.0804 (3)0.3063 (4)0.0586 (14)
C80.1057 (3)1.0790 (3)0.3989 (4)0.0532 (13)
C90.0454 (3)1.1085 (4)0.4106 (5)0.0747 (18)
H90.01831.12790.35910.090*
C100.0627 (3)1.0788 (4)0.5628 (5)0.0722 (17)
C110.1233 (3)1.0474 (4)0.5517 (4)0.0729 (17)
H110.14921.02560.60270.087*
C120.0393 (4)1.0786 (5)0.6554 (5)0.103 (3)
H12A−0.00331.10220.64990.155*
H12B0.06941.10760.69890.155*
H12C0.03681.02580.67670.155*
C130.2915 (4)1.1117 (4)0.4756 (5)0.091 (2)
H13A0.31651.13640.43190.110*
H13B0.25321.14420.47780.110*
C140.3295 (5)1.1185 (4)0.5624 (6)0.128 (3)
H14A0.36711.08430.56330.153*
H14B0.30381.09900.60840.153*
C150.3547 (4)1.1996 (4)0.5931 (7)0.111 (3)
H15A0.38141.21970.54880.133*
H15B0.31781.23460.59380.133*
C160.3937 (5)1.1977 (5)0.6860 (7)0.139 (4)
H16A0.40911.24940.70290.208*
H16B0.43051.16340.68540.208*
H16C0.36701.17920.73030.208*
C170.2167 (3)0.8926 (3)0.3962 (4)0.0697 (17)
H17A0.24040.85900.44310.084*
H17B0.17160.89460.40790.084*
C180.2177 (4)0.8561 (4)0.3060 (5)0.107 (3)
H18A0.26270.84970.29500.129*
H18B0.19550.88950.25770.129*
C190.1832 (6)0.7749 (5)0.3022 (7)0.148 (4)
H19A0.20500.74310.35250.178*
H19B0.13840.78260.31330.178*
C200.1821 (7)0.7340 (7)0.2212 (9)0.217 (7)
H20A0.15970.68530.22580.326*
H20B0.22620.72400.21030.326*
H20C0.15960.76400.17070.326*
C210.1267 (4)0.7823 (4)0.5608 (5)0.104 (3)
H21A0.11470.74830.60810.156*
H21B0.15510.75500.52490.156*
H21C0.08790.79860.52100.156*
O60.1586 (3)0.8466 (3)0.6014 (4)0.123 (2)
H60.13400.87030.63120.147*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0454 (2)0.0530 (2)0.0517 (2)0.00077 (18)0.00511 (16)−0.00375 (17)
N10.048 (2)0.050 (2)0.051 (3)0.001 (2)0.006 (2)−0.002 (2)
N20.057 (3)0.092 (4)0.074 (3)0.017 (3)0.004 (3)0.000 (3)
N30.055 (3)0.062 (3)0.062 (3)0.010 (2)0.010 (2)0.000 (2)
N40.066 (3)0.111 (5)0.084 (4)0.014 (3)0.024 (3)0.010 (3)
O10.046 (2)0.077 (2)0.050 (2)0.0019 (19)0.0050 (17)0.0063 (18)
O20.065 (3)0.114 (3)0.059 (3)0.007 (2)0.018 (2)0.018 (2)
O30.056 (2)0.088 (3)0.058 (2)0.019 (2)0.0097 (19)0.005 (2)
O40.057 (2)0.110 (3)0.058 (3)0.018 (2)0.002 (2)0.011 (2)
O50.072 (3)0.078 (3)0.069 (3)−0.014 (2)0.003 (2)0.000 (2)
C10.053 (3)0.058 (3)0.047 (3)0.001 (3)0.007 (3)−0.003 (3)
C20.049 (3)0.056 (3)0.049 (3)0.004 (3)0.006 (3)−0.007 (2)
C30.061 (4)0.083 (4)0.061 (4)0.012 (3)0.012 (3)−0.006 (3)
C40.061 (4)0.058 (3)0.063 (4)0.009 (3)−0.005 (3)−0.001 (3)
C50.058 (4)0.064 (3)0.054 (3)−0.002 (3)0.002 (3)−0.007 (3)
C60.087 (5)0.103 (5)0.077 (5)0.022 (4)0.000 (4)0.009 (4)
C70.051 (3)0.063 (3)0.060 (4)0.000 (3)0.001 (3)−0.004 (3)
C80.048 (3)0.054 (3)0.058 (3)0.002 (3)0.007 (3)−0.004 (3)
C90.052 (4)0.096 (5)0.075 (4)0.011 (3)0.006 (3)0.009 (4)
C100.072 (4)0.076 (4)0.073 (4)0.006 (4)0.024 (4)0.002 (3)
C110.074 (4)0.082 (4)0.062 (4)0.016 (4)0.010 (3)0.001 (3)
C120.101 (6)0.129 (7)0.090 (5)0.021 (5)0.048 (5)0.011 (5)
C130.122 (6)0.059 (4)0.084 (5)0.006 (4)−0.020 (5)−0.013 (3)
C140.136 (8)0.087 (6)0.148 (8)−0.019 (5)−0.023 (7)−0.027 (5)
C150.102 (6)0.070 (5)0.157 (8)−0.022 (4)0.007 (6)−0.034 (5)
C160.165 (10)0.097 (6)0.153 (9)−0.007 (6)0.016 (8)−0.028 (6)
C170.071 (4)0.053 (3)0.083 (4)−0.013 (3)0.005 (3)−0.003 (3)
C180.131 (7)0.083 (5)0.108 (6)−0.028 (5)0.021 (5)−0.037 (4)
C190.191 (11)0.111 (7)0.142 (9)−0.040 (7)0.023 (8)−0.055 (6)
C200.265 (17)0.138 (10)0.244 (16)−0.054 (11)0.022 (13)−0.074 (11)
C210.115 (6)0.093 (5)0.107 (6)−0.020 (5)0.028 (5)−0.019 (5)
O60.118 (4)0.129 (4)0.134 (4)−0.045 (4)0.065 (3)−0.047 (3)

Geometric parameters (Å, °)

Sn1—C172.103 (5)C10—C121.494 (9)
Sn1—C132.107 (6)C11—H110.9300
Sn1—O12.161 (4)C12—H12A0.9600
Sn1—O32.167 (4)C12—H12B0.9600
Sn1—N12.481 (4)C12—H12C0.9600
Sn1—N32.635 (5)C13—C141.392 (9)
Sn1—O52.770 (4)C13—H13A0.9700
N1—C21.331 (6)C13—H13B0.9700
N1—C51.337 (6)C14—C151.526 (8)
N2—C31.326 (7)C14—H14A0.9700
N2—C41.330 (8)C14—H14B0.9700
N3—C81.333 (6)C15—C161.473 (10)
N3—C111.337 (7)C15—H15A0.9700
N4—C101.317 (8)C15—H15B0.9700
N4—C91.334 (8)C16—H16A0.9600
O1—C11.288 (6)C16—H16B0.9600
O2—C11.215 (7)C16—H16C0.9600
O3—C71.278 (6)C17—C181.456 (8)
O4—C71.223 (6)C17—H17A0.9700
O5—H20.8500C17—H17B0.9700
O5—H10.8500C18—C191.558 (9)
C1—C21.498 (7)C18—H18A0.9700
C2—C31.383 (7)C18—H18B0.9700
C3—H30.9300C19—C201.369 (11)
C4—C51.395 (8)C19—H19A0.9700
C4—C61.498 (8)C19—H19B0.9700
C5—H50.9300C20—H20A0.9600
C6—H6A0.9600C20—H20B0.9600
C6—H6B0.9600C20—H20C0.9600
C6—H6C0.9600C21—O61.372 (8)
C7—C81.498 (8)C21—H21A0.9600
C8—C91.376 (8)C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C10—C111.390 (8)O6—H60.8200
C17—Sn1—C13161.7 (3)N4—C10—C12117.4 (6)
C17—Sn1—O1100.9 (2)C11—C10—C12121.0 (6)
C13—Sn1—O196.1 (2)N3—C11—C10121.9 (6)
C17—Sn1—O394.1 (2)N3—C11—H11119.0
C13—Sn1—O397.1 (2)C10—C11—H11119.0
O1—Sn1—O374.24 (14)C10—C12—H12A109.5
C17—Sn1—N189.9 (2)C10—C12—H12B109.5
C13—Sn1—N189.6 (2)H12A—C12—H12B109.5
O1—Sn1—N169.34 (14)C10—C12—H12C109.5
O3—Sn1—N1143.46 (14)H12A—C12—H12C109.5
C17—Sn1—N387.0 (2)H12B—C12—H12C109.5
C13—Sn1—N384.0 (2)C14—C13—Sn1125.0 (5)
O1—Sn1—N3141.33 (14)C14—C13—H13A106.1
O3—Sn1—N367.44 (15)Sn1—C13—H13A106.1
N1—Sn1—N3149.10 (14)C14—C13—H13B106.1
C17—Sn1—O575.89 (18)Sn1—C13—H13B106.1
C13—Sn1—O586.2 (2)H13A—C13—H13B106.3
O1—Sn1—O5145.38 (13)C13—C14—C15117.7 (7)
O3—Sn1—O5139.93 (13)C13—C14—H14A107.9
N1—Sn1—O576.15 (13)C15—C14—H14A107.9
N3—Sn1—O573.29 (13)C13—C14—H14B107.9
C2—N1—C5117.8 (5)C15—C14—H14B107.9
C2—N1—Sn1111.8 (3)H14A—C14—H14B107.2
C5—N1—Sn1130.4 (4)C16—C15—C14111.6 (7)
C3—N2—C4116.5 (5)C16—C15—H15A109.3
C8—N3—C11116.3 (5)C14—C15—H15A109.3
C8—N3—Sn1109.6 (3)C16—C15—H15B109.3
C11—N3—Sn1134.0 (4)C14—C15—H15B109.3
C10—N4—C9116.3 (6)H15A—C15—H15B108.0
C1—O1—Sn1125.1 (3)C15—C16—H16A109.5
C7—O3—Sn1128.4 (4)C15—C16—H16B109.5
H2—O5—Sn1138.8H16A—C16—H16B109.5
Sn1—O5—H1113.9C15—C16—H16C109.5
Sn1—O5—H2138.8H16A—C16—H16C109.5
H1—O5—H2105.0H16B—C16—H16C109.5
O2—C1—O1125.3 (5)C18—C17—Sn1116.8 (4)
O2—C1—C2119.2 (5)C18—C17—H17A108.1
O1—C1—C2115.5 (5)Sn1—C17—H17A108.1
N1—C2—C3119.9 (5)C18—C17—H17B108.1
N1—C2—C1116.8 (5)Sn1—C17—H17B108.1
C3—C2—C1123.3 (5)H17A—C17—H17B107.3
N2—C3—C2123.4 (6)C17—C18—C19110.5 (6)
N2—C3—H3118.3C17—C18—H18A109.6
C2—C3—H3118.3C19—C18—H18A109.6
N2—C4—C5121.1 (5)C17—C18—H18B109.6
N2—C4—C6118.0 (5)C19—C18—H18B109.6
C5—C4—C6120.9 (6)H18A—C18—H18B108.1
N1—C5—C4121.2 (6)C20—C19—C18116.0 (9)
N1—C5—H5119.4C20—C19—H19A108.3
C4—C5—H5119.4C18—C19—H19A108.3
C4—C6—H6A109.5C20—C19—H19B108.3
C4—C6—H6B109.5C18—C19—H19B108.3
H6A—C6—H6B109.5H19A—C19—H19B107.4
C4—C6—H6C109.5C19—C20—H20A109.5
H6A—C6—H6C109.5C19—C20—H20B109.5
H6B—C6—H6C109.5H20A—C20—H20B109.5
O4—C7—O3124.2 (6)C19—C20—H20C109.5
O4—C7—C8118.7 (5)H20A—C20—H20C109.5
O3—C7—C8117.2 (5)H20B—C20—H20C109.5
N3—C8—C9121.1 (5)O6—C21—H21A109.5
N3—C8—C7117.3 (5)O6—C21—H21B109.5
C9—C8—C7121.6 (5)H21A—C21—H21B109.5
N4—C9—C8122.8 (6)O6—C21—H21C109.5
N4—C9—H9118.6H21A—C21—H21C109.5
C8—C9—H9118.6H21B—C21—H21C109.5
N4—C10—C11121.6 (6)C21—O6—H6109.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1···O60.851.922.755 (6)169
O5—H2···O1i0.852.193.039 (5)172
O6—H6···O4i0.821.932.703 (6)156

Symmetry codes: (i) x, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2726).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gielen, M., Vanbellinghen, C., Gelan, J. & Willem, R. (1988). Bull. Soc. Chim. Belg.97, 873–876.
  • Ma, C., Han, Y., Zhang, R. & Wang, D. (2004). J. Chem. Soc. Dalton Trans. pp. 1832–1840. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography