PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m965.
Published online 2008 June 28. doi:  10.1107/S1600536808018977
PMCID: PMC2961727

catena-Poly[[tris­(pyridine-κN)copper(II)]-μ-tetra­fluoro­terephthalato-κ2 O 1:O 4]

Abstract

In the title compound, [Cu(C8F4O4)(C5H5N)3]n, the CuII atom, lying on a twofold rotation axis, is five-coordinated by two O atoms from two tetra­fluoro­terephthalate ligands and three N atoms from three pyridine ligands in a distorted trigonal-bipyramidal geometry. Adjacent CuII atoms are connected via the bridging tetra­fluoro­terephthalate ligands into a one-dimensional chain running along the [101] direction.

Related literature

For related literature, see: Baeg & Lee (2003 [triangle]); Baruah et al. (2007 [triangle]); Bastin et al. (2008 [triangle]); Cheng et al. (2007 [triangle]); Eddaoudi et al. (2000 [triangle]); Gould et al. (2008 [triangle]); Reineke et al. (1999 [triangle]); Stephenson & Hardie (2006 [triangle]); Yuan et al. (2004 [triangle]); Zhang et al. (2007 [triangle]); Zheng et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m965-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8F4O4)(C5H5N)3]
  • M r = 536.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m965-efi1.jpg
  • a = 15.3579 (8) Å
  • b = 8.7652 (5) Å
  • c = 16.6050 (9) Å
  • β = 100.241 (3)°
  • V = 2199.7 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.06 mm−1
  • T = 273 (2) K
  • 0.15 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.857, T max = 0.939
  • 10049 measured reflections
  • 1950 independent reflections
  • 1857 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.071
  • S = 1.09
  • 1950 reflections
  • 160 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018977/hy2139sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018977/hy2139Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Center for Analysis and Testing of Jiangnan University and the Research Institute of Elemento–Organic Chemistry of Taishan College.

supplementary crystallographic information

Comment

Recently, organically directed metal–terephthalates have attracted much attention due to their novel structures and desirable physical properties, and a lot of research work has been done on this type of complexes (Bastin et al., 2008; Eddaoudi et al., 2000; Gould et al., 2008). However, there are rare reports about halogen substituted terephthalate metal complexes till now. Some research work in computational study suggests that adsorption property in gas storage can be improved with electronegative atoms (e.g. halogen atoms) in the organic linkers or frameworks (Zhang et al., 2007). New topologies with favorable properties will be achieved by introducing some strong electronegative atoms to the phenyl ring.

The title compound consists of one-dimensional neutral zig-zag chains (Fig. 1 and Fig. 2). The tetrafluoroterephthalate ligand is coordinated to CuII ion in a bridging bis-monodentate fashion. In the trigonal bipyramidal coordination unit, two O atoms from two tetrafluoroterephthalate ligands and one N atom from a pyridine molecule form the equatorial plane. The axial positions are occupied by N atoms from two pyridine molecules with an N—Cu—N angle of 174.71 (9)° (Table 1). The Cu—N bond lengths lie in the range of 2.0236 (16) to 2.073 (2) Å and agree well with the reported values (Baruah et al., 2007; Cheng et al., 2007). The Cu—O bond lengths are 2.0609 (12) Å, which are comparable with the reported values in the similar complexes (Baeg & Lee, 2003; Stephenson & Hardie, 2006; Yuan et al., 2004). In the aromatic ring systems, the values of bond lengths and angles coincide with those previously reported (Zheng et al., 2008).

Experimental

All the reagents and solvents employed were commercially available. Tetrafluoroterephthalic acid was purified by recrystallization. According to the literature procedure (Reineke et al., 1999), the title compound was synthesized by slow vapor diffusion at room temperature of pyridine (3 ml) into an N,N-dimethylformamide solution (2 ml) containing a mixture of tetrafluoroterephthalic acid (0.071 g, 0.30 mmol) and Cu(NO3)2.3H2O (0.036 g, 0.15 mmol) diluted with CH3OH (6 ml). After two weeks, blue block-shaped crystals were obtained (yield 55% based on Cu). Analysis, calculated for C23H15CuF4N3O4: C 51.45, H 2.82, N 7.82%; found: C 51.50, H 2.86, N 7.76%.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A portion of the chain structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 2-x, y, 1/2-z.)
Fig. 2.
View of the unit cell of the title compound.

Crystal data

[Cu(C8F4O4)(C5H5N)3]F000 = 1084
Mr = 536.92Dx = 1.621 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7406 reflections
a = 15.3579 (8) Åθ = 2.7–28.3º
b = 8.7652 (5) ŵ = 1.06 mm1
c = 16.6050 (9) ÅT = 273 (2) K
β = 100.241 (3)ºBlock, blue
V = 2199.7 (2) Å30.15 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1950 independent reflections
Radiation source: fine-focus sealed tube1857 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 273(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −18→18
Tmin = 0.857, Tmax = 0.939k = −10→10
10049 measured reflectionsl = −19→19

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.076P)2 + 0.2195P], P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max < 0.001
wR(F2) = 0.071Δρmax = 0.29 e Å3
S = 1.09Δρmin = −0.32 e Å3
1950 reflectionsExtinction correction: none
160 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu11.00000.48258 (3)0.25000.03297 (12)
F10.92606 (7)0.77593 (17)0.00333 (8)0.0623 (4)
F20.68438 (9)0.54002 (17)0.09264 (9)0.0671 (4)
O10.92455 (8)0.61557 (16)0.16170 (8)0.0455 (3)
O20.86509 (13)0.40923 (19)0.09534 (10)0.0696 (5)
N11.10527 (11)0.49323 (17)0.19221 (10)0.0389 (4)
N21.00000.2460 (2)0.25000.0373 (5)
C10.87159 (13)0.5462 (2)0.10665 (11)0.0426 (4)
C20.80884 (12)0.6517 (2)0.05110 (11)0.0380 (4)
C30.83842 (11)0.7617 (2)0.00333 (11)0.0405 (4)
C40.71868 (13)0.6428 (2)0.04644 (11)0.0421 (4)
C51.11090 (14)0.6002 (2)0.13562 (13)0.0497 (5)
H51.06060.65620.11450.060*
C61.18819 (17)0.6303 (3)0.10757 (16)0.0629 (6)
H61.18990.70580.06850.076*
C71.26229 (16)0.5481 (3)0.13773 (16)0.0648 (7)
H71.31540.56780.12020.078*
C81.25719 (14)0.4362 (3)0.19412 (16)0.0627 (6)
H81.30650.37700.21440.075*
C91.17809 (13)0.4123 (3)0.22054 (13)0.0497 (5)
H91.17530.33710.25950.060*
C101.00346 (13)0.1681 (2)0.18168 (13)0.0462 (5)
H101.00560.22180.13370.055*
C111.00405 (16)0.0110 (3)0.1796 (2)0.0640 (7)
H111.0071−0.04050.13120.077*
C121.0000−0.0680 (4)0.25000.0727 (11)
H121.0000−0.17410.25000.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03026 (18)0.03081 (18)0.03662 (19)0.0000.00260 (12)0.000
F10.0316 (6)0.0927 (10)0.0611 (8)0.0037 (6)0.0038 (5)0.0250 (7)
F20.0513 (7)0.0780 (9)0.0705 (9)−0.0032 (7)0.0064 (6)0.0393 (7)
O10.0377 (7)0.0536 (8)0.0402 (7)0.0054 (6)−0.0064 (6)0.0110 (6)
O20.0893 (12)0.0491 (10)0.0593 (10)0.0198 (8)−0.0170 (9)0.0028 (7)
N10.0353 (8)0.0404 (8)0.0402 (9)−0.0013 (6)0.0049 (7)−0.0037 (6)
N20.0348 (10)0.0303 (10)0.0452 (12)0.0000.0033 (9)0.000
C10.0415 (10)0.0502 (12)0.0338 (10)0.0121 (9)0.0004 (8)0.0079 (8)
C20.0375 (9)0.0422 (10)0.0312 (9)0.0068 (7)−0.0024 (7)0.0030 (7)
C30.0291 (8)0.0537 (11)0.0364 (9)0.0033 (8)−0.0004 (7)0.0041 (8)
C40.0419 (10)0.0468 (11)0.0359 (9)0.0003 (8)0.0024 (8)0.0108 (8)
C50.0488 (11)0.0494 (12)0.0520 (12)−0.0007 (9)0.0121 (9)0.0049 (9)
C60.0667 (15)0.0669 (15)0.0601 (14)−0.0140 (12)0.0245 (12)0.0020 (11)
C70.0447 (12)0.0851 (17)0.0687 (16)−0.0165 (12)0.0215 (11)−0.0195 (14)
C80.0354 (11)0.0820 (17)0.0692 (15)0.0034 (11)0.0052 (10)−0.0112 (14)
C90.0380 (10)0.0579 (13)0.0512 (12)0.0037 (9)0.0025 (9)−0.0002 (10)
C100.0416 (10)0.0398 (10)0.0560 (12)0.0010 (8)0.0053 (9)−0.0104 (9)
C110.0498 (13)0.0455 (13)0.094 (2)0.0042 (9)0.0057 (13)−0.0265 (12)
C120.0525 (19)0.0297 (15)0.132 (4)0.0000.007 (2)0.000

Geometric parameters (Å, °)

Cu1—N12.0236 (16)C4—C3ii1.376 (3)
Cu1—N1i2.0236 (16)C5—C61.376 (3)
Cu1—O12.0609 (12)C5—H50.9300
Cu1—O1i2.0609 (12)C6—C71.365 (4)
Cu1—N22.073 (2)C6—H60.9300
F1—C31.352 (2)C7—C81.368 (4)
F2—C41.350 (2)C7—H70.9300
O1—C11.266 (2)C8—C91.379 (3)
O2—C11.216 (3)C8—H80.9300
N1—C91.337 (3)C9—H90.9300
N1—C51.341 (3)C10—C111.377 (3)
N2—C101.333 (2)C10—H100.9300
N2—C10i1.333 (2)C11—C121.370 (4)
C1—C21.523 (2)C11—H110.9300
C2—C41.375 (3)C12—C11i1.371 (4)
C2—C31.376 (3)C12—H120.9300
C3—C4ii1.376 (3)
N1—Cu1—N1i174.71 (9)F2—C4—C3ii118.40 (17)
N1—Cu1—O191.84 (6)C2—C4—C3ii121.81 (17)
N1i—Cu1—O185.16 (6)N1—C5—C6122.6 (2)
N1—Cu1—O1i85.17 (6)N1—C5—H5118.7
N1i—Cu1—O1i91.84 (6)C6—C5—H5118.7
O1—Cu1—O1i111.11 (8)C7—C6—C5119.2 (2)
N1—Cu1—N292.64 (4)C7—C6—H6120.4
N1i—Cu1—N292.64 (4)C5—C6—H6120.4
O1—Cu1—N2124.45 (4)C6—C7—C8119.0 (2)
O1i—Cu1—N2124.44 (4)C6—C7—H7120.5
C1—O1—Cu1116.73 (12)C8—C7—H7120.5
C9—N1—C5117.60 (18)C7—C8—C9119.2 (2)
C9—N1—Cu1119.83 (14)C7—C8—H8120.4
C5—N1—Cu1121.40 (14)C9—C8—H8120.4
C10—N2—C10i118.4 (2)N1—C9—C8122.4 (2)
C10—N2—Cu1120.81 (12)N1—C9—H9118.8
C10i—N2—Cu1120.81 (12)C8—C9—H9118.8
O2—C1—O1127.60 (17)N2—C10—C11122.4 (2)
O2—C1—C2118.69 (17)N2—C10—H10118.8
O1—C1—C2113.70 (17)C11—C10—H10118.8
C4—C2—C3116.07 (16)C12—C11—C10118.8 (3)
C4—C2—C1121.48 (17)C12—C11—H11120.6
C3—C2—C1122.45 (16)C10—C11—H11120.6
F1—C3—C2119.69 (16)C11—C12—C11i119.3 (3)
F1—C3—C4ii118.18 (17)C11—C12—H12120.4
C2—C3—C4ii122.12 (17)C11i—C12—H12120.4
F2—C4—C2119.78 (17)
N1—Cu1—O1—C198.39 (14)O2—C1—C2—C3−120.1 (2)
N1i—Cu1—O1—C1−85.98 (14)O1—C1—C2—C361.3 (2)
O1i—Cu1—O1—C1−176.08 (15)C4—C2—C3—F1−178.79 (17)
N2—Cu1—O1—C13.92 (15)C1—C2—C3—F11.7 (3)
O1—Cu1—N1—C9−174.91 (15)C4—C2—C3—C4ii−0.2 (3)
O1i—Cu1—N1—C974.06 (15)C1—C2—C3—C4ii−179.68 (18)
N2—Cu1—N1—C9−50.30 (15)C3—C2—C4—F2−178.63 (18)
O1—Cu1—N1—C517.73 (16)C1—C2—C4—F20.9 (3)
O1i—Cu1—N1—C5−93.30 (16)C3—C2—C4—C3ii0.2 (3)
N2—Cu1—N1—C5142.34 (15)C1—C2—C4—C3ii179.68 (18)
N1—Cu1—N2—C10−49.29 (11)C9—N1—C5—C6−1.2 (3)
N1i—Cu1—N2—C10130.71 (11)Cu1—N1—C5—C6166.42 (18)
O1—Cu1—N2—C1044.76 (11)N1—C5—C6—C70.5 (4)
O1i—Cu1—N2—C10−135.25 (11)C5—C6—C7—C81.0 (4)
N1—Cu1—N2—C10i130.71 (11)C6—C7—C8—C9−1.7 (4)
N1i—Cu1—N2—C10i−49.29 (11)C5—N1—C9—C80.5 (3)
O1—Cu1—N2—C10i−135.24 (11)Cu1—N1—C9—C8−167.33 (18)
O1i—Cu1—N2—C10i44.76 (11)C7—C8—C9—N10.9 (4)
Cu1—O1—C1—O2−6.9 (3)C10i—N2—C10—C11−0.36 (16)
Cu1—O1—C1—C2171.55 (12)Cu1—N2—C10—C11179.65 (16)
O2—C1—C2—C460.4 (3)N2—C10—C11—C120.7 (3)
O1—C1—C2—C4−118.2 (2)C10—C11—C12—C11i−0.33 (15)

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+3/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2139).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Baeg, J. Y. & Lee, S. W. (2003). Inorg. Chem. Commun.6, 313–316.
  • Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.
  • Bastin, L., Bárcia, P. S., Hurtado, E. J., Silva, J. A. C., Rodrigues, A. E. & Chen, B. (2008). J. Phys. Chem. C, 112, 1575–1581.
  • Bruker (2007). APEX2 and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  • Cheng, J. K., Yin, P. X., Li, Z. J., Qin, Y. Y. & Yao, Y. G. (2007). Inorg. Chem. Commun.10, 808–810.
  • Eddaoudi, M., Li, H. L. & Yaghi, O. M. (2000). J. Am. Chem. Soc.122, 1391–1397.
  • Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. (2008). J. Am. Chem. Soc.130, 3246–3247. [PubMed]
  • Reineke, T. M., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. (1999). Angew. Chem. Int. Ed.38, 2590–2594. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stephenson, M. D. & Hardie, M. J. (2006). Cryst. Growth Des.6, 423–432.
  • Yuan, J. X., Xiao, H. P. & Hu, M. L. (2004). Z. Kristallogr. New Cryst. Struct.219, 224–226.
  • Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295. [PubMed]
  • Zheng, C.-G., Hong, J.-Q., Zhang, J. & Wang, C. (2008). Acta Cryst. E64, m879. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography