PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1294.
Published online 2008 June 19. doi:  10.1107/S1600536808018072
PMCID: PMC2961721

2-Chloro-N-(3,5-dichloro­phenyl)­benzamide

Abstract

The amide group in the structure of the title compound (N35DCP2CBA), C13H8Cl3NO, is trans-planar, similar to that observed in N-(3-chloro­phen­yl)benzamide, N-(3,5-dichloro­phen­yl)benzamide, 2-chloro-N-phenyl­benzamide and other benzanilides. The C=O bond in N35DCP2CBA is anti to the ortho-chloro substituent in the benzoyl ring. The amide group makes dihedral angles of 63.1 (12) and 31.1 (17)°, respectively, with the benzoyl and aniline benzene rings, while the dihedral angle between the two benzene rings is 32.1 (2)°. The mol­ecules are linked into chains along the b axis by N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003 [triangle]); Gowda, Foro et al. (2008 [triangle]); Gowda, Tokarčík et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1294-scheme1.jpg

Experimental

Crystal data

  • C13H8Cl3NO
  • M r = 300.55
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1294-efi1.jpg
  • a = 14.699 (1) Å
  • b = 8.736 (1) Å
  • c = 20.445 (2) Å
  • V = 2625.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 299 (2) K
  • 0.38 × 0.14 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.781, T max = 0.960
  • 12954 measured reflections
  • 2686 independent reflections
  • 1288 reflections with I > 2σ(I)
  • R int = 0.094

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.230
  • S = 1.08
  • 2686 reflections
  • 166 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018072/ci2616sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018072/ci2616Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(3,5-dichlorophenyl)-benzamide (N35DCP2CBA) has been determined to explore the effect of substituents on the structure of benzanilides (Gowda et al., 2003; Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008). The N—H and C═O bonds in the amide group of N35DCP2CBA are trans to each other (Fig.1), similar to that observed in N-(3-chlorophenyl)-benzamide(N3CPBA) (Gowda, Tokarčík et al., 2008), N-(3,5-dichlorophenyl)-benzamide (N35DCPBA) (Gowda, Foro et al., 2008), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003) and other benzanilides. Further, the conformation of the C═O bond in the structure of N35DCP2CBA is anti to the ortho-chloro substituent in the benzoyl ring, compared to the syn conformation observed in NP2CBA. The amide group –NHCO– makes dihedral angles of 63.1 (12)° and 31.1 (17)° with the benzoyl and aniline rings, respectively, while the two benzene rings (benzoyl and aniline) form a dihedral angle of 32.1 (2)°, compared to the corresponding values of 14.3 (8)°, 44.4 (4)° and 58.3 (1)° in N35DCPBA.

In the crystal structure, the molecules are linked by N—H···O hydrogen bonds (Table 1) forming chains running along the a axis, as shown in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The N-bound H atom was located in a difference map, and its positional parameters were refined [N—H = 0.81 (5) Å]. C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å. All H atoms were refined with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H8Cl3NOF000 = 1216
Mr = 300.55Dx = 1.521 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2008 reflections
a = 14.699 (1) Åθ = 2.3–28.0º
b = 8.736 (1) ŵ = 0.68 mm1
c = 20.445 (2) ÅT = 299 (2) K
V = 2625.4 (4) Å3Needle, colourless
Z = 80.38 × 0.14 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur diffractometer2686 independent reflections
Radiation source: fine-focus sealed tube1288 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.094
T = 299(2) Kθmax = 26.4º
Rotation method using ω and [var phi] scansθmin = 2.4º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −16→18
Tmin = 0.781, Tmax = 0.960k = −10→10
12954 measured reflectionsl = −25→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.230  w = 1/[σ2(Fo2) + (0.12P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2686 reflectionsΔρmax = 0.45 e Å3
166 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.60823 (8)0.38987 (17)0.43298 (7)0.0724 (5)
Cl20.35071 (9)0.06746 (18)0.55821 (7)0.0769 (5)
Cl30.27012 (13)0.5045 (3)0.22328 (10)0.1267 (9)
O10.1652 (2)0.2743 (4)0.36978 (19)0.0721 (11)
N10.2723 (2)0.4586 (4)0.3792 (2)0.0479 (10)
H1N0.284 (3)0.545 (6)0.367 (2)0.057*
C10.3381 (3)0.3802 (5)0.4176 (2)0.0444 (10)
C20.4295 (3)0.4206 (5)0.4086 (2)0.0500 (11)
H20.44600.49470.37820.060*
C30.4950 (3)0.3468 (5)0.4463 (2)0.0533 (12)
C40.4722 (3)0.2395 (5)0.4929 (2)0.0551 (12)
H40.51650.19270.51850.066*
C50.3819 (3)0.2042 (5)0.5002 (2)0.0485 (11)
C60.3138 (3)0.2729 (5)0.4639 (2)0.0455 (10)
H60.25310.24740.47060.055*
C70.1939 (3)0.4018 (5)0.3566 (2)0.0463 (11)
C80.1385 (3)0.5072 (4)0.3149 (2)0.0421 (10)
C90.1654 (3)0.5573 (6)0.2540 (3)0.0619 (13)
C100.1078 (5)0.6459 (7)0.2155 (3)0.090 (2)
H100.12590.67880.17420.108*
C110.0241 (5)0.6837 (7)0.2398 (4)0.094 (2)
H11−0.01480.74390.21480.113*
C12−0.0030 (4)0.6354 (7)0.2991 (4)0.0825 (18)
H12−0.06040.66220.31440.099*
C130.0520 (3)0.5485 (5)0.3367 (3)0.0577 (13)
H130.03200.51580.37750.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0387 (7)0.0917 (10)0.0867 (11)−0.0057 (6)−0.0020 (6)0.0066 (8)
Cl20.0570 (8)0.0977 (11)0.0759 (10)0.0016 (7)−0.0032 (7)0.0413 (8)
Cl30.0856 (14)0.213 (3)0.0812 (13)0.0195 (13)0.0327 (10)0.0204 (14)
O10.070 (2)0.0475 (19)0.098 (3)−0.0128 (16)−0.037 (2)0.0190 (19)
N10.044 (2)0.0401 (19)0.060 (3)−0.0031 (17)−0.0158 (18)0.0114 (18)
C10.042 (2)0.044 (2)0.047 (3)0.0060 (19)−0.0056 (19)−0.004 (2)
C20.042 (3)0.053 (3)0.055 (3)−0.004 (2)0.001 (2)−0.004 (2)
C30.039 (3)0.060 (3)0.061 (3)−0.004 (2)−0.008 (2)−0.005 (3)
C40.046 (3)0.068 (3)0.052 (3)0.010 (2)−0.009 (2)0.003 (3)
C50.044 (2)0.052 (2)0.050 (3)0.002 (2)0.000 (2)0.008 (2)
C60.035 (2)0.047 (2)0.055 (3)0.0028 (19)−0.002 (2)0.004 (2)
C70.043 (3)0.041 (2)0.055 (3)0.0052 (19)−0.007 (2)−0.002 (2)
C80.039 (2)0.041 (2)0.046 (3)−0.0013 (17)−0.0121 (19)−0.002 (2)
C90.054 (3)0.074 (3)0.057 (3)−0.001 (2)−0.005 (2)0.009 (3)
C100.111 (6)0.095 (5)0.065 (4)−0.004 (4)−0.030 (4)0.028 (4)
C110.099 (6)0.061 (4)0.121 (7)0.012 (3)−0.065 (5)0.005 (4)
C120.062 (4)0.083 (4)0.103 (5)0.026 (3)−0.027 (4)−0.017 (4)
C130.048 (3)0.059 (3)0.066 (3)0.010 (2)−0.011 (2)−0.007 (3)

Geometric parameters (Å, °)

Cl1—C31.728 (5)C5—C61.383 (6)
Cl2—C51.744 (5)C6—H60.93
Cl3—C91.725 (6)C7—C81.496 (6)
O1—C71.221 (5)C8—C91.376 (7)
N1—C71.338 (6)C8—C131.396 (6)
N1—C11.422 (5)C9—C101.392 (8)
N1—H1N0.81 (5)C10—C111.368 (9)
C1—C61.380 (6)C10—H100.93
C1—C21.400 (6)C11—C121.344 (9)
C2—C31.392 (6)C11—H110.93
C2—H20.93C12—C131.350 (7)
C3—C41.378 (6)C12—H120.93
C4—C51.371 (6)C13—H130.93
C4—H40.93
C7—N1—C1126.7 (4)O1—C7—N1124.1 (4)
C7—N1—H1N115 (3)O1—C7—C8119.9 (4)
C1—N1—H1N118 (4)N1—C7—C8115.9 (4)
C6—C1—C2120.7 (4)C9—C8—C13117.9 (4)
C6—C1—N1122.0 (4)C9—C8—C7123.7 (4)
C2—C1—N1117.3 (4)C13—C8—C7118.2 (4)
C3—C2—C1118.3 (4)C8—C9—C10120.9 (5)
C3—C2—H2120.9C8—C9—Cl3120.0 (4)
C1—C2—H2120.9C10—C9—Cl3119.0 (5)
C4—C3—C2122.0 (4)C11—C10—C9118.5 (6)
C4—C3—Cl1119.4 (4)C11—C10—H10120.8
C2—C3—Cl1118.5 (4)C9—C10—H10120.8
C5—C4—C3117.6 (4)C12—C11—C10121.2 (5)
C5—C4—H4121.2C12—C11—H11119.4
C3—C4—H4121.2C10—C11—H11119.4
C4—C5—C6123.0 (4)C11—C12—C13120.8 (6)
C4—C5—Cl2118.8 (3)C11—C12—H12119.6
C6—C5—Cl2118.1 (3)C13—C12—H12119.6
C1—C6—C5118.4 (4)C12—C13—C8120.6 (5)
C1—C6—H6120.8C12—C13—H13119.7
C5—C6—H6120.8C8—C13—H13119.7
C7—N1—C1—C6−35.1 (7)O1—C7—C8—C9−115.6 (6)
C7—N1—C1—C2147.4 (5)N1—C7—C8—C966.7 (6)
C6—C1—C2—C31.6 (6)O1—C7—C8—C1359.7 (6)
N1—C1—C2—C3179.1 (4)N1—C7—C8—C13−118.0 (5)
C1—C2—C3—C4−1.8 (7)C13—C8—C9—C10−0.2 (7)
C1—C2—C3—Cl1177.2 (3)C7—C8—C9—C10175.1 (5)
C2—C3—C4—C51.5 (7)C13—C8—C9—Cl3−177.8 (4)
Cl1—C3—C4—C5−177.5 (4)C7—C8—C9—Cl3−2.5 (6)
C3—C4—C5—C6−1.1 (7)C8—C9—C10—C110.7 (9)
C3—C4—C5—Cl2179.4 (3)Cl3—C9—C10—C11178.3 (5)
C2—C1—C6—C5−1.2 (6)C9—C10—C11—C12−0.7 (10)
N1—C1—C6—C5−178.6 (4)C10—C11—C12—C130.3 (9)
C4—C5—C6—C11.0 (7)C11—C12—C13—C80.2 (8)
Cl2—C5—C6—C1−179.5 (3)C9—C8—C13—C12−0.2 (7)
C1—N1—C7—O14.9 (8)C7—C8—C13—C12−175.8 (4)
C1—N1—C7—C8−177.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.81 (5)2.14 (5)2.913 (5)160 (5)

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2616).

References

  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1243. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography