PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1194.
Published online 2008 June 7. doi:  10.1107/S1600536808016152
PMCID: PMC2961718

2-Chloro-N-(4-fluoro­phen­yl)acetamide

Abstract

In the title compound, C8H7ClFNO, an intra­molecular C—H(...)O hydrogen bond forms a six-membered ring. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)O hydrogen bonds, forming infinite chains along the c axis.

Related literature

For related compounds, see: Wen et al. (2006 [triangle]); Zhang et al. (2006 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1194-scheme1.jpg

Experimental

Crystal data

  • C8H7ClFNO
  • M r = 187.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1194-efi1.jpg
  • a = 4.7410 (9) Å
  • b = 20.062 (4) Å
  • c = 8.9860 (18) Å
  • β = 99.60 (3)°
  • V = 842.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.885, T max = 0.980
  • 974 measured reflections
  • 861 independent reflections
  • 610 reflections with I > 2σ(I)
  • R int = 0.015
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.126
  • S = 1.00
  • 861 reflections
  • 103 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.20 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 92 Friedel pairs
  • Flack parameter: 0.18 (17)

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016152/hb2738sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016152/hb2738Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

N-(substituted phenyl)-2-chloroacetamides are important intermediates in organic synthesis. They can be used in the synthesis of many derivatives such as (quinolin-8-yloxy) acetamide (Zhang et al., 2006) and 2,5-piperazinedione (Wen et al., 2006). In our studies in this area, the title compound,(I), was synthesized and structurally characterised.

The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987). An intramolecular C—H···O interaction occurs (Fig. 1) and an intermolecular N—H···O hydrogen bond helps to establish the packing (Table 1).

Experimental

Chloroacetyl chloride (0.05 mol) was added to a solution of 4-nitrophenylamine (0.05 mol) and triethylamine (0.05 mol) in toluene (50 ml) over a period of 30 min, with cooling in an ice bath, and then the mixture was stirred at room remperature for 4 h. After separation of the triethylamine hydrochloride by filtration, the organic phase was washed three times with water. The toluene layer was removed and evaporated. Pink blocks of (I) were obtained by slow evaporation of a chloroform solution over a period of 7 d.

Refinement

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93-0.97Å) and refined as riding with Uiso(H) = xUeq(carrier).

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

Crystal data

C8H7ClFNOF000 = 384
Mr = 187.60Dx = 1.479 Mg m3
Monoclinic, CcMo Kα radiation λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 4.7410 (9) Åθ = 8–12º
b = 20.062 (4) ŵ = 0.42 mm1
c = 8.9860 (18) ÅT = 293 (2) K
β = 99.60 (3)ºBlock, pink
V = 842.7 (3) Å30.30 × 0.20 × 0.05 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.016
Radiation source: fine-focus sealed tubeθmax = 25.2º
Monochromator: graphiteθmin = 2.0º
T = 293(2) Kh = 0→5
ω/2θ scansk = 0→24
Absorption correction: ψ scan(North et al., 1968)l = −10→10
Tmin = 0.885, Tmax = 0.9803 standard reflections
974 measured reflections every 200 reflections
861 independent reflections intensity decay: none
610 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046  w = 1/[σ2(Fo2) + (0.P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.16 e Å3
861 reflectionsΔρmin = −0.20 e Å3
103 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 92 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.18 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl−0.4033 (4)0.15199 (10)0.5685 (2)0.1096 (7)
N0.1497 (11)0.2970 (2)0.6731 (5)0.0738 (14)
H10.20330.28480.76530.089*
O−0.1268 (10)0.2652 (2)0.4535 (5)0.084
F0.6949 (14)0.5279 (2)0.5602 (6)0.147 (2)
C10.5590 (19)0.4687 (3)0.5826 (8)0.095 (2)
C20.3302 (19)0.4493 (4)0.4775 (8)0.097 (2)
H2A0.26840.47490.39200.116*
C30.1935 (15)0.3901 (3)0.5030 (6)0.0817 (18)
H3A0.04500.37430.43080.098*
C40.2759 (13)0.3546 (3)0.6344 (6)0.0707 (15)
C50.5091 (15)0.3787 (3)0.7356 (7)0.0798 (17)
H5A0.57150.35390.82240.096*
C60.6503 (19)0.4357 (4)0.7157 (8)0.099 (2)
H6A0.79950.45160.78740.119*
C7−0.0366 (13)0.2576 (3)0.5950 (5)0.0710 (16)
C8−0.1284 (15)0.1998 (3)0.6748 (6)0.089 (2)
H8A−0.19370.21530.76540.107*
H8B0.03580.17120.70580.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.1293 (15)0.1275 (15)0.0742 (9)−0.0277 (13)0.0237 (9)−0.0087 (10)
N0.089 (3)0.082 (3)0.051 (2)0.010 (3)0.013 (2)0.004 (2)
O0.0840.0840.0840.0000.0140.000
F0.213 (7)0.120 (3)0.121 (3)−0.062 (4)0.067 (4)0.001 (3)
C10.117 (6)0.091 (5)0.086 (5)−0.031 (5)0.043 (5)0.001 (4)
C20.121 (6)0.103 (5)0.074 (4)0.000 (5)0.039 (4)0.017 (4)
C30.090 (4)0.096 (5)0.063 (3)−0.006 (4)0.025 (3)0.002 (3)
C40.078 (4)0.080 (4)0.058 (3)0.008 (3)0.020 (3)0.008 (3)
C50.095 (4)0.083 (4)0.067 (3)−0.016 (4)0.029 (3)0.000 (3)
C60.115 (6)0.116 (5)0.074 (4)−0.007 (5)0.038 (4)0.010 (4)
C70.072 (3)0.102 (4)0.039 (2)−0.003 (3)0.009 (2)−0.011 (3)
C80.111 (5)0.110 (5)0.044 (3)−0.017 (4)0.005 (3)0.013 (3)

Geometric parameters (Å, °)

Cl—C81.765 (7)C3—C41.379 (8)
N—C71.300 (7)C3—H3A0.9300
N—C41.373 (8)C4—C51.396 (9)
N—H10.8600C5—C61.353 (10)
O—C71.281 (6)C5—H5A0.9300
F—C11.381 (7)C6—H6A0.9300
C1—C21.371 (10)C7—C81.467 (8)
C1—C61.372 (10)C8—H8A0.9700
C2—C31.390 (9)C8—H8B0.9700
C2—H2A0.9300
C7—N—C4131.3 (5)C6—C5—C4124.2 (6)
C7—N—H1114.3C6—C5—H5A117.9
C4—N—H1114.3C4—C5—H5A117.9
C2—C1—C6124.2 (7)C5—C6—C1115.6 (7)
C2—C1—F118.6 (7)C5—C6—H6A122.2
C6—C1—F117.0 (7)C1—C6—H6A122.2
C1—C2—C3117.7 (6)O—C7—N123.2 (6)
C1—C2—H2A121.1O—C7—C8120.1 (5)
C3—C2—H2A121.1N—C7—C8116.5 (4)
C4—C3—C2120.7 (6)C7—C8—Cl114.7 (4)
C4—C3—H3A119.7C7—C8—H8A108.6
C2—C3—H3A119.7Cl—C8—H8A108.6
N—C4—C3125.4 (6)C7—C8—H8B108.6
N—C4—C5117.3 (5)Cl—C8—H8B108.6
C3—C4—C5117.3 (6)H8A—C8—H8B107.6
C6—C1—C2—C3−4.3 (12)C3—C4—C5—C62.8 (10)
F—C1—C2—C3−179.1 (7)C4—C5—C6—C1−3.0 (11)
C1—C2—C3—C43.9 (11)C2—C1—C6—C53.8 (12)
C7—N—C4—C311.2 (11)F—C1—C6—C5178.7 (7)
C7—N—C4—C5−168.0 (7)C4—N—C7—O4.7 (11)
C2—C3—C4—N177.7 (6)C4—N—C7—C8−179.3 (6)
C2—C3—C4—C5−3.1 (10)O—C7—C8—Cl−9.0 (9)
N—C4—C5—C6−177.9 (7)N—C7—C8—Cl174.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···O0.932.362.925 (8)119
N—H1···Oi0.862.022.853 (6)164

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2738).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wen, Y. H., Zhang, S. S., Yu, B. H., Li, X. M. & Liu, Q. (2006). Asian J. Chem.18, 1032–1038.
  • Zhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, o3412–o3413.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography