PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1299.
Published online 2008 June 19. doi:  10.1107/S1600536808018230
PMCID: PMC2961710

N-(2,6-Dimethyl­phen­yl)benzamide

Abstract

The title compound, C15H15NO, crystallizes with two mol­ecules in the asymmetric unit. The H—N—C=O units are in a trans conformation, similar to that observed in N-(3,4-dimethyl­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benz­amide and other benzanilides. The central –NHCO– bridging unit is tilted at angles of 17.1 (3) and 16.4 (3)° to the benzoyl ring in the two mol­ecules. The two rings (benzoyl and aniline) are almost orthogonal with respect to each other, making dihedral angles of 86.3 (1) and 86.0 (1)° in the two mol­ecules. N—H(...)O hydrogen bonds link mol­ecules into infinite chains running along the c axis.

Related literature

For related literature, see: Gowda et al. (2003 [triangle], 2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1299-scheme1.jpg

Experimental

Crystal data

  • C15H15NO
  • M r = 225.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1299-efi1.jpg
  • a = 16.4389 (8) Å
  • b = 8.2903 (4) Å
  • c = 9.4902 (3) Å
  • β = 98.165 (4)°
  • V = 1280.25 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.52 × 0.46 × 0.22 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.924, T max = 0.985
  • 38015 measured reflections
  • 2504 independent reflections
  • 2110 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.108
  • S = 0.98
  • 2504 reflections
  • 307 parameters
  • 35 restraints
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018230/bt2724sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018230/bt2724Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds (Interreg IIIA) for financial support in the purchase of the diffractometer.

supplementary crystallographic information

Comment

In the present work, the structure of N-(2,6-dimethylphenyl)-benzamide (N26DMPBA) has been determined to study the effect of substituents on the solid state geometries of benzanilides (Gowda et al., 2003; Gowda et al., 2008a; Gowda et al., 2008b). The conformations of the N—H and C=O bonds in N26DMPBA (Fig.1) are anti to each other, similar to that observed in N-(3,4-dimethylphenyl)-benzamide (Gowda et al., 2008a), N-(2,6-dichlorophenyl)-benzamide (Gowda et al., 2008b) and other benzanilides (Gowda et al., 2003). The structure of N26DMPBA has two molecules in its asymmetric unit. The central amide group –NHCO– is tilted to the benzoyl ring at the angles of 17.1 (3)° and 16.4 (3)°, in molecule 1 and 2, respectively. The two rings (benzoyl and aniline) are almost orthogonal, with the dihedral angles of 86.3 (1)° and 86.0 (1)° in molecules 1 and 2, respectively.

Part of the crystal structure of the title compound showing molecular chains as viewed down the b axis is shown in Fig.2. Hydrogen bonds N1–H1N···O1(i) and N2–H2N···O2(ii) give rise to infinite molecular chains running along the c axis (Symmetry codes: (i) x,-y,z + 1/2; (ii) x,-y + 1,z + 1/2).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C–H distances of 0.93Å (C-aromatic), 0.96Å (C-methyl) and N–H distances 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C,N) and 1.5 Ueq (C-methyl). The displacement parameters of C-atoms in aniline ring of both molecules were restrained by use of the SHELXL97 DELU command with default standard deviations.

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Crystal structure of the title compound viewed down the b axis. Hydrogen bonds N1–H1N···O1(i) and N2–H2N···O2(ii) give rise to infinite molecular chains running along the c axis. Symmetry ...

Crystal data

C15H15NOF000 = 480
Mr = 225.28Dx = 1.169 Mg m3
Monoclinic, PcMo Kα radiation λ = 0.71073 Å
Hall symbol: P -2 y cCell parameters from 18913 reflections
a = 16.4389 (8) Åθ = 3.1–29.3º
b = 8.2903 (4) ŵ = 0.07 mm1
c = 9.4902 (3) ÅT = 295 (2) K
β = 98.165 (4)ºBlock, colourless
V = 1280.25 (10) Å30.52 × 0.46 × 0.22 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer2504 independent reflections
Monochromator: graphite2110 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.059
T = 295(2) Kθmax = 26.0º
ω scans with κ offsetsθmin = 5.3º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)h = −20→20
Tmin = 0.924, Tmax = 0.985k = −10→10
38015 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0851P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
2504 reflectionsΔρmax = 0.13 e Å3
307 parametersΔρmin = −0.14 e Å3
35 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2493 Friedel pairs

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.32493 (12)0.0027 (2)0.63912 (17)0.0476 (4)
H1N0.324−0.00670.72910.057*
O10.27687 (12)−0.0838 (2)0.41847 (15)0.0654 (5)
C10.27534 (13)−0.0900 (2)0.5470 (2)0.0446 (5)
C20.21752 (13)−0.2015 (2)0.6052 (2)0.0435 (5)
C30.15307 (16)−0.2637 (3)0.5109 (2)0.0523 (5)
H30.1478−0.23490.41530.063*
C40.09687 (16)−0.3669 (3)0.5561 (3)0.0601 (6)
H40.0532−0.40560.4920.072*
C50.10537 (18)−0.4130 (3)0.6967 (3)0.0664 (7)
H50.0679−0.48430.72760.08*
C60.16901 (17)−0.3537 (3)0.7909 (3)0.0655 (7)
H60.1745−0.38520.88590.079*
C70.22549 (17)−0.2472 (3)0.7468 (2)0.0534 (5)
H70.2683−0.20680.81180.064*
C80.37898 (15)0.1165 (3)0.5877 (2)0.0523 (5)
C90.36263 (18)0.2796 (3)0.5956 (3)0.0611 (6)
C100.4128 (2)0.3869 (4)0.5370 (4)0.0872 (10)
H100.40280.49710.54140.105*
C110.4773 (3)0.3323 (6)0.4721 (5)0.1051 (13)
H110.50970.40560.4310.126*
C120.4940 (2)0.1719 (6)0.4678 (4)0.0922 (10)
H120.53820.13730.42450.111*
C130.44632 (17)0.0583 (4)0.5268 (3)0.0714 (7)
C140.46683 (19)−0.1163 (3)0.5241 (4)0.0916 (10)
H14A0.5245−0.12880.51980.137*
H14B0.4358−0.16570.44210.137*
H14C0.4535−0.16710.60880.137*
C150.29134 (19)0.3401 (3)0.6634 (3)0.0813 (8)
H15A0.30350.3290.76490.122*
H15B0.28170.45160.63940.122*
H15C0.24320.27820.62910.122*
N20.82433 (12)0.5011 (2)0.52006 (18)0.0491 (4)
H2N0.82720.49240.61090.059*
O20.87411 (12)0.4211 (2)0.32326 (16)0.0615 (5)
C210.87462 (13)0.4123 (3)0.4518 (2)0.0432 (5)
C220.93234 (13)0.2984 (2)0.5387 (2)0.0432 (5)
C230.99704 (15)0.2371 (3)0.4762 (2)0.0524 (5)
H231.00310.2680.38410.063*
C241.05223 (16)0.1314 (3)0.5484 (3)0.0617 (6)
H241.09590.09270.50580.074*
C251.04286 (19)0.0830 (4)0.6833 (3)0.0695 (7)
H251.07980.01020.73190.083*
C260.9794 (2)0.1416 (4)0.7462 (3)0.0706 (7)
H260.97330.10890.83790.085*
C270.92362 (17)0.2497 (3)0.6748 (2)0.0552 (6)
H270.88050.28920.71850.066*
C280.76616 (16)0.6096 (3)0.4456 (3)0.0574 (6)
C290.69959 (18)0.5439 (5)0.3541 (3)0.0782 (8)
C300.6445 (3)0.6494 (8)0.2804 (4)0.1161 (14)
H300.59970.60930.21980.139*
C310.6549 (4)0.8115 (8)0.2950 (5)0.1338 (18)
H310.61740.88070.24320.161*
C320.7200 (3)0.8750 (5)0.3850 (5)0.1149 (14)
H320.72560.98620.39440.138*
C330.7778 (2)0.7734 (4)0.4626 (3)0.0749 (8)
C340.8494 (3)0.8415 (4)0.5588 (4)0.0956 (11)
H34A0.89850.78540.54390.143*
H34B0.84060.82880.65610.143*
H34C0.8550.9540.53830.143*
C350.6868 (2)0.3667 (5)0.3381 (4)0.0944 (11)
H35A0.63480.34620.28120.142*
H35B0.68760.31860.43030.142*
H35C0.730.32090.29240.142*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0636 (11)0.0502 (11)0.0299 (8)−0.0042 (8)0.0098 (7)−0.0009 (7)
O10.0973 (13)0.0703 (11)0.0302 (8)−0.0220 (9)0.0143 (8)−0.0006 (7)
C10.0622 (13)0.0405 (11)0.0317 (10)0.0035 (9)0.0088 (9)0.0025 (8)
C20.0584 (12)0.0382 (10)0.0354 (10)0.0056 (9)0.0121 (9)−0.0022 (8)
C30.0676 (14)0.0524 (12)0.0370 (10)0.0002 (11)0.0074 (10)−0.0012 (9)
C40.0624 (14)0.0608 (15)0.0580 (14)−0.0097 (12)0.0113 (11)−0.0109 (11)
C50.0785 (16)0.0621 (15)0.0651 (16)−0.0169 (13)0.0318 (13)−0.0066 (12)
C60.0941 (19)0.0658 (15)0.0404 (12)−0.0114 (14)0.0224 (12)0.0041 (11)
C70.0704 (15)0.0549 (13)0.0356 (10)−0.0044 (11)0.0096 (10)0.0001 (9)
C80.0583 (12)0.0603 (14)0.0375 (11)−0.0109 (10)0.0040 (9)0.0008 (9)
C90.0758 (16)0.0583 (14)0.0465 (13)−0.0119 (12)−0.0011 (11)0.0019 (10)
C100.112 (2)0.0695 (19)0.077 (2)−0.0283 (17)0.0019 (18)0.0093 (15)
C110.102 (3)0.116 (3)0.099 (3)−0.047 (2)0.021 (2)0.018 (2)
C120.0732 (18)0.118 (3)0.089 (2)−0.0255 (19)0.0234 (17)0.001 (2)
C130.0634 (15)0.090 (2)0.0615 (16)−0.0082 (14)0.0117 (13)−0.0007 (14)
C140.083 (2)0.097 (2)0.100 (3)0.0162 (18)0.0284 (18)−0.0079 (19)
C150.116 (2)0.0602 (16)0.0685 (17)0.0098 (16)0.0150 (16)0.0055 (14)
N20.0646 (11)0.0517 (11)0.0318 (9)0.0042 (9)0.0095 (7)0.0007 (7)
O20.0854 (11)0.0690 (11)0.0316 (8)0.0136 (8)0.0131 (7)0.0056 (7)
C210.0534 (11)0.0406 (11)0.0354 (11)−0.0037 (9)0.0056 (9)0.0006 (8)
C220.0566 (12)0.0389 (10)0.0337 (10)−0.0058 (9)0.0050 (9)−0.0026 (8)
C230.0650 (14)0.0505 (13)0.0431 (11)0.0003 (11)0.0126 (10)−0.0022 (9)
C240.0620 (14)0.0627 (15)0.0594 (14)0.0096 (12)0.0054 (11)−0.0100 (11)
C250.0839 (18)0.0638 (16)0.0554 (15)0.0191 (14)−0.0085 (13)−0.0017 (12)
C260.103 (2)0.0713 (16)0.0367 (12)0.0173 (16)0.0076 (12)0.0101 (11)
C270.0738 (15)0.0550 (13)0.0378 (11)0.0078 (11)0.0109 (11)0.0026 (10)
C280.0638 (14)0.0676 (15)0.0428 (12)0.0141 (11)0.0149 (10)0.0050 (10)
C290.0598 (15)0.117 (2)0.0581 (16)0.0097 (16)0.0087 (12)0.0036 (16)
C300.083 (2)0.167 (4)0.093 (3)0.041 (3)−0.006 (2)0.006 (3)
C310.133 (4)0.157 (4)0.105 (3)0.079 (3)−0.006 (3)0.026 (3)
C320.163 (4)0.086 (2)0.098 (3)0.058 (3)0.025 (3)0.015 (2)
C330.106 (2)0.0647 (17)0.0579 (16)0.0229 (15)0.0245 (15)0.0070 (12)
C340.155 (3)0.0564 (17)0.078 (2)−0.009 (2)0.024 (2)−0.0030 (15)
C350.0733 (19)0.114 (3)0.094 (3)−0.0303 (19)0.0074 (18)−0.014 (2)

Geometric parameters (Å, °)

N1—C11.348 (3)N2—C211.341 (3)
N1—C81.429 (3)N2—C281.425 (3)
N1—H1N0.86N2—H2N0.86
O1—C11.225 (2)O2—C211.221 (3)
C1—C21.487 (3)C21—C221.500 (3)
C2—C31.385 (3)C22—C271.380 (3)
C2—C71.385 (3)C22—C231.386 (3)
C3—C41.373 (4)C23—C241.372 (4)
C3—H30.93C23—H230.93
C4—C51.376 (4)C24—C251.372 (4)
C4—H40.93C24—H240.93
C5—C61.368 (4)C25—C261.364 (4)
C5—H50.93C25—H250.93
C6—C71.389 (4)C26—C271.388 (4)
C6—H60.93C26—H260.93
C7—H70.93C27—H270.93
C8—C91.383 (4)C28—C331.378 (4)
C8—C131.405 (4)C28—C291.406 (4)
C9—C101.382 (4)C29—C301.376 (5)
C9—C151.501 (4)C29—C351.489 (6)
C10—C111.376 (6)C30—C311.359 (8)
C10—H100.93C30—H300.93
C11—C121.360 (6)C31—C321.375 (8)
C11—H110.93C31—H310.93
C12—C131.392 (5)C32—C331.398 (5)
C12—H120.93C32—H320.93
C13—C141.488 (4)C33—C341.494 (5)
C14—H14A0.96C34—H34A0.96
C14—H14B0.96C34—H34B0.96
C14—H14C0.96C34—H34C0.96
C15—H15A0.96C35—H35A0.96
C15—H15B0.96C35—H35B0.96
C15—H15C0.9599C35—H35C0.96
C1—N1—C8120.20 (17)C21—N2—C28121.55 (17)
C1—N1—H1N119.9C21—N2—H2N119.2
C8—N1—H1N119.9C28—N2—H2N119.2
O1—C1—N1121.7 (2)O2—C21—N2122.2 (2)
O1—C1—C2120.00 (19)O2—C21—C22120.06 (19)
N1—C1—C2118.25 (17)N2—C21—C22117.74 (17)
C3—C2—C7118.9 (2)C27—C22—C23118.8 (2)
C3—C2—C1117.52 (18)C27—C22—C21123.8 (2)
C7—C2—C1123.5 (2)C23—C22—C21117.35 (17)
C4—C3—C2121.1 (2)C24—C23—C22120.9 (2)
C4—C3—H3119.4C24—C23—H23119.6
C2—C3—H3119.4C22—C23—H23119.6
C3—C4—C5119.8 (2)C23—C24—C25120.0 (2)
C3—C4—H4120.1C23—C24—H24120
C5—C4—H4120.1C25—C24—H24120
C6—C5—C4119.8 (2)C26—C25—C24119.9 (2)
C6—C5—H5120.1C26—C25—H25120
C4—C5—H5120.1C24—C25—H25120
C5—C6—C7120.9 (2)C25—C26—C27120.7 (2)
C5—C6—H6119.6C25—C26—H26119.7
C7—C6—H6119.6C27—C26—H26119.7
C2—C7—C6119.4 (2)C22—C27—C26119.8 (2)
C2—C7—H7120.3C22—C27—H27120.1
C6—C7—H7120.3C26—C27—H27120.1
C9—C8—C13121.9 (2)C33—C28—C29122.5 (3)
C9—C8—N1119.5 (2)C33—C28—N2119.5 (3)
C13—C8—N1118.6 (2)C29—C28—N2118.1 (3)
C10—C9—C8118.4 (3)C30—C29—C28117.8 (4)
C10—C9—C15120.3 (3)C30—C29—C35120.2 (4)
C8—C9—C15121.3 (2)C28—C29—C35122.1 (3)
C11—C10—C9120.6 (3)C31—C30—C29120.8 (4)
C11—C10—H10119.7C31—C30—H30119.6
C9—C10—H10119.7C29—C30—H30119.6
C12—C11—C10120.5 (3)C30—C31—C32121.1 (4)
C12—C11—H11119.8C30—C31—H31119.4
C10—C11—H11119.8C32—C31—H31119.4
C11—C12—C13121.5 (3)C31—C32—C33120.5 (4)
C11—C12—H12119.3C31—C32—H32119.8
C13—C12—H12119.3C33—C32—H32119.8
C12—C13—C8117.0 (3)C28—C33—C32117.3 (4)
C12—C13—C14120.6 (3)C28—C33—C34121.9 (3)
C8—C13—C14122.3 (2)C32—C33—C34120.8 (3)
C13—C14—H14A109.5C33—C34—H34A109.5
C13—C14—H14B109.5C33—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C13—C14—H14C109.5C33—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C9—C15—H15A109.5C29—C35—H35A109.5
C9—C15—H15B109.5C29—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C9—C15—H15C109.4C29—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
C8—N1—C1—O12.5 (3)C28—N2—C21—O21.0 (3)
C8—N1—C1—C2−177.4 (2)C28—N2—C21—C22−178.5 (2)
O1—C1—C2—C3−16.4 (3)O2—C21—C22—C27−162.8 (2)
N1—C1—C2—C3163.44 (19)N2—C21—C22—C2716.7 (3)
O1—C1—C2—C7162.8 (2)O2—C21—C22—C2315.9 (3)
N1—C1—C2—C7−17.3 (3)N2—C21—C22—C23−164.55 (19)
C7—C2—C3—C41.0 (3)C27—C22—C23—C24−0.8 (3)
C1—C2—C3—C4−179.8 (2)C21—C22—C23—C24−179.6 (2)
C2—C3—C4—C5−1.5 (4)C22—C23—C24—C251.2 (4)
C3—C4—C5—C61.0 (4)C23—C24—C25—C26−0.9 (4)
C4—C5—C6—C70.0 (4)C24—C25—C26—C270.3 (5)
C3—C2—C7—C60.0 (3)C23—C22—C27—C260.2 (3)
C1—C2—C7—C6−179.2 (2)C21—C22—C27—C26178.9 (2)
C5—C6—C7—C2−0.5 (4)C25—C26—C27—C220.1 (4)
C1—N1—C8—C9108.7 (2)C21—N2—C28—C33−110.2 (3)
C1—N1—C8—C13−69.7 (3)C21—N2—C28—C2968.3 (3)
C13—C8—C9—C102.4 (4)C33—C28—C29—C30−0.3 (4)
N1—C8—C9—C10−175.9 (2)N2—C28—C29—C30−178.8 (3)
C13—C8—C9—C15−178.9 (3)C33—C28—C29—C35−179.0 (3)
N1—C8—C9—C152.8 (3)N2—C28—C29—C352.5 (4)
C8—C9—C10—C110.1 (4)C28—C29—C30—C310.6 (6)
C15—C9—C10—C11−178.7 (3)C35—C29—C30—C31179.4 (4)
C9—C10—C11—C12−1.6 (6)C29—C30—C31—C32−0.9 (8)
C10—C11—C12—C130.7 (6)C30—C31—C32—C330.8 (8)
C11—C12—C13—C81.6 (5)C29—C28—C33—C320.3 (4)
C11—C12—C13—C14−178.5 (3)N2—C28—C33—C32178.7 (3)
C9—C8—C13—C12−3.2 (4)C29—C28—C33—C34−179.2 (3)
N1—C8—C13—C12175.1 (2)N2—C28—C33—C34−0.8 (4)
C9—C8—C13—C14176.9 (3)C31—C32—C33—C28−0.5 (6)
N1—C8—C13—C14−4.8 (4)C31—C32—C33—C34179.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.192.949 (2)147
N2—H2N···O2ii0.862.172.949 (2)150

Symmetry codes: (i) x, −y, z+1/2; (ii) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2724).

References

  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o540. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography