PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m935–m936.
Published online 2008 June 19. doi:  10.1107/S1600536808018060
PMCID: PMC2961703

Hydrogen-bonding and π–π stacking inter­actions in tris­(1,10-phenanthroline-κ2 N,N′)nickel(II) bis­{[1-tert-butyl­imidazole-2(3H)-thione-κS]trichloridonickelate(II)} acetonitrile disolvate

Abstract

The asymmetric unit of the title complex, [Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2CH3CN, consists of one anion, one-half of a cation and one acetonitrile mol­ecule. The NiII atom in the [Ni(phen)3]2+ cation (phen is 1,10-phenanthroline) lies on an inversion centre in an octa­hedral environment, whereas in the [NiCl3(tm)] anion [tm is 1-tert-butyl­imidazole-2(3H)-thione], the geometry is distorted tetra­hedral. In the crystal structure, inter­molecular C—H(...)Cl hydrogen bonds and π–π stacking inter­actions (centroid–centroid distance = 3.52 Å) lead to the formation of a three-dimensional framework. One of the methyl groups of the tert-butyl group of N-tert-butyl-2-thio­imidazole is disordered between two equally populated positions.

Related literature

For general background, see: Fatimi et al. (1994 [triangle]); Iradyan et al. (1987 [triangle]); Suescun et al. (1999 [triangle]); Yu et al. (2003 [triangle]); Fang & Dai (2006 [triangle]); Chen et al., (2007 [triangle]); Senda et al. (2006 [triangle]). For synthesis details, see: Kister et al. (1979 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m935-scheme1.jpg

Experimental

Crystal data

  • [Ni(C12H8N2)3][NiCl3(C7H12N2S)]2·2C2H3N
  • M r = 1324.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m935-efi1.jpg
  • a = 22.8953 (15) Å
  • b = 15.2934 (10) Å
  • c = 19.9417 (19) Å
  • β = 123.543 (3)°
  • V = 5819.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.36 mm−1
  • T = 298 (2) K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.737, T max = 0.792
  • 30921 measured reflections
  • 5178 independent reflections
  • 3346 reflections with I > 2σ(I)
  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.157
  • S = 1.07
  • 5178 reflections
  • 370 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.24 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018060/su2050sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018060/su2050Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CSIR, New Delhi, for financial support.

supplementary crystallographic information

Comment

2-Thioimidazole (N,N,S donors) and its alkyl derivatives have antithyroid activity and platelet inhibitory effects. (Fatimi et al., 1994; Iradyan et al., 1987). The literature revealed the presence of various nickel(II) complexes with phenanthroline (Suescun et al., 1999; Yu et al. (2003); Fang & Dai, 2006; Chen et al., 2007) but none with N-tert-butyl-2-thioimidazole, except the one reported recently (Senda et al., 2006). The present work reports the first structure of a nickel(II) complex with N-tert-butyl-2-thioimidazole and 1,10 phenanthroline, containing a tetrahedral anion, [Ni(tm)(Cl)3]-, and an octahedral cation, [Ni(phen)3]2+.

The title complex (I) is centrosymmetric, ionic in nature and comprises of one complex cation [Ni(phen)3]2+ and two complex anions [Ni(tm)(Cl)3]- in the unit cell (Fig. 1). The metal centre in [Ni(phen)3]2+ is in an octahedral environment, the equatorial plane of which is formed by four phen nitrogen atoms, and the axial positions are occupied by another two nitrogen atoms of phen, with Ni1—N bond distances in the range of 2.079 (4)–2.100 (4) Å. The dihedral angles between the meanplanes of the neighboring phen rings are 77.53°, 86.07° and 85.97°. The cis-angles in the octahedron deviate only slightly from 90° and the trans angle in the axial position is almost linear i.e. 170.54 (15)°. The nickel(II) atom in the [Ni(tm)(Cl)3]- anion is coordinated by three chlorine atoms and one sulfur atom of tm in a distorted tetrahedral geometry. The Ni—Cl bond distances are in the range of 2.251 (15) to 2.275 (15) Å. In the anion the two short bond distances (Ni2—Cl3 and Ni2—Cl1 of 2.2507 (15) and 2.253 (2) Å, respectively) and two long bond distances (Ni2—S1 and Ni2—Cl2 of 2.3054 (17) and 2.2753 (16) Å, respectively) make the geometry distorted tetrahedral.

Due to the presence of several intermolecular interactions between the three chloride ions bonded to atom Ni2 and the hydrogen atoms present on the phen rings, the complex cation is linked to six complex anions (Fig. 2 and Table 1), whereas the complex anions are linked to four complex cations through C—H···Cl hydrogen bonds (Fig. 3 and Table 1). In the crystal packing of complex (I) two layers are linked by hydrogen bonds in the bc plane. The [Ni(phen)3]2+ cations and the [Ni(tm)(Cl)3]- anions interact with each other via hydrogen bonds formed by the terminally coordinated chloride ions of the complex anion (Cl1, Cl2 and Cl3) and the hydrogen atoms present on the phen ligands (Fig. 4). The two complex anions also interact with one another through π–π stacking, with a separation of ca. 3.52 Å, and intermolecular C—H···Cl and C—H···N interactions involving the hydrogen atom of the middle ring of phenanthroline and the nitrogen atom of the acetonitrile molecule present in the lattice (Table 1).

Experimental

All the reagents were of commercial grade and were used as received. N-tert-butyl-thioimidazole (tm) was synthesized by a literature method (Kister et al., 1979). To a solution of NiCl2.6H2O (1.0 mmol) in 5 ml methanol, a methanolic solution of N-tert-butyl-2-thioimidazole (1.0 mmol) was added and the mixture stirred for 40 minutes. This mixture was then added to the solution obtained by mixing NiCl2.6H2O (1.0 mmol) in methanol with a methanolic solution of 1,10-phenanthroline (3.0 mmol). The whole reaction mixture was stirred for a further 30 minutes. The clear solution obtained was filtered and evaporated to dryness. The solid compound obtained was dissolved in acetonitrile and green single crystals, suitable for X-ray analysis, were obtained by slow evaporation at room temperature. Yield 62%. Analysis calculated for C50H48N10S2Cl6Ni3: C 48.30, H 3.86, N 11.27, S 5.15%; found: C 48.24, H 3.78, N 11.21, S 5.12%. Selected IR frequencies (KBr, ν, cm-1): 725 (s), 849 (s), 1369 (w), 1575 (m), 1623 (w), 3060 (w), 3412 (s).

Refinement

One of the methyl groups of the tert-butyl group of N-tert-butyl-2-thioimidazole is disordered between two equally populated positions (C6 and C6A; H6A and H6A1; H6B and H6B1; H6C and H6C1). C-bound H atoms were placed in geometrically idealized positions, with Csp2—H = 0.93 Å and Csp3—H = 0.96 Å, and treated as riding atoms with Uiso(H) = 1.2Ueq(C). H atoms attached to the O atoms were located in a difference Fourier map and refined as riding in their as found positions, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the compound (I), shown with 30% probability displacement ellipsoids [H atoms have been omitted for clarity; Symmetry code: (i) -x, y, 0.5 - z.]
Fig. 2.
A view of the intermolecular C—H···Cl interactions involving the [Ni(phen)3]+ cation.
Fig. 3.
A view of the intermolecular π–π stacking and C—H···Cl interactions involving the [Ni(tm)(Cl)3]- anion.
Fig. 4.
A view along the b axis of the crystal packing of complex (I), showing the interaction between two layers.

Crystal data

[Ni(C12H8N2)3][NiCl3(C7H12N2S1)]2·2C2H3NF000 = 2720
Mr = 1324.04Dx = 1.511 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5736 reflections
a = 22.8953 (15) Åθ = 1.7–25.1º
b = 15.2934 (10) ŵ = 1.36 mm1
c = 19.9417 (19) ÅT = 298 (2) K
β = 123.543 (3)ºBlock, green
V = 5819.7 (8) Å30.24 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer5178 independent reflections
Radiation source: fine-focus sealed tube3346 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.076
T = 298(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −26→26
Tmin = 0.737, Tmax = 0.792k = −17→17
30921 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157  w = 1/[σ2(Fo2) + (0.0987P)2 + 2.7947P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5178 reflectionsΔρmax = 1.24 e Å3
370 parametersΔρmin = −0.55 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.000000.00042 (5)0.250000.0324 (3)
N10.0571 (2)0.1054 (2)0.3259 (2)0.0353 (12)
N20.0560 (2)−0.0924 (2)0.3397 (2)0.0402 (12)
N30.0611 (2)−0.0069 (3)0.2013 (2)0.0394 (12)
C80.1142 (3)0.1047 (4)0.3998 (3)0.0432 (17)
C90.1465 (3)0.1812 (4)0.4422 (3)0.0543 (19)
C100.1193 (3)0.2601 (4)0.4082 (4)0.060 (2)
C110.0597 (3)0.2640 (3)0.3294 (3)0.048 (2)
C120.0304 (2)0.1842 (3)0.2905 (3)0.0359 (17)
C130.0280 (3)0.3432 (4)0.2882 (4)0.065 (3)
C140.1128 (3)−0.1368 (3)0.3578 (3)0.0534 (19)
C150.1476 (4)−0.1940 (4)0.4220 (4)0.069 (2)
C160.1245 (4)−0.2030 (4)0.4708 (4)0.071 (2)
C170.0649 (3)−0.1584 (3)0.4557 (3)0.0542 (19)
C180.0313 (3)−0.1036 (3)0.3870 (3)0.0424 (17)
C190.1208 (3)0.0335 (4)0.2245 (3)0.0503 (17)
C200.1528 (3)0.0259 (4)0.1814 (4)0.066 (3)
C210.1223 (4)−0.0231 (5)0.1145 (4)0.068 (3)
C220.0604 (3)−0.0683 (4)0.0887 (4)0.058 (2)
C230.0315 (3)−0.0582 (3)0.1348 (3)0.0410 (17)
C240.0231 (4)−0.1241 (5)0.0183 (4)0.072 (3)
C25−0.0359 (4)−0.1657 (4)−0.0022 (4)0.071 (3)
Ni20.29979 (3)0.96924 (4)0.47969 (4)0.0434 (2)
Cl10.25801 (8)0.97552 (11)0.55872 (9)0.0625 (6)
Cl20.27465 (7)0.88260 (10)0.37416 (8)0.0583 (5)
Cl30.27772 (7)1.10207 (9)0.42193 (8)0.0528 (5)
S10.41282 (7)0.93790 (9)0.58439 (8)0.0452 (4)
N40.4404 (2)0.8996 (3)0.4710 (3)0.0408 (16)
N50.5332 (2)0.8910 (3)0.5920 (2)0.0381 (12)
C10.4636 (3)0.9081 (3)0.5493 (3)0.0359 (17)
C20.5514 (3)0.8728 (4)0.5376 (3)0.0479 (19)
C30.4945 (3)0.8778 (4)0.4641 (3)0.0481 (17)
C40.5832 (3)0.8870 (4)0.6823 (3)0.0452 (17)
C50.5869 (4)0.9750 (4)0.7181 (4)0.089 (3)
C60.6584 (6)0.8705 (16)0.7056 (9)0.093 (6)0.75 (3)
C70.5581 (4)0.8178 (5)0.7141 (4)0.077 (3)
C6A0.643 (2)0.830 (4)0.695 (3)0.093 (6)0.25 (3)
N60.3858 (4)0.7541 (4)0.3045 (4)0.091 (3)
C260.3366 (4)0.7841 (4)0.2533 (4)0.066 (3)
C270.2734 (4)0.8224 (5)0.1875 (5)0.093 (3)
H80.133500.051200.424200.0520*
H90.186700.178100.494000.0650*
H100.140000.311300.436800.0720*
H130.046400.396200.314500.0780*
H140.13000−0.129000.325500.0640*
H150.18620−0.225500.431300.0830*
H160.14870−0.239500.515400.0860*
H190.142100.067900.270700.0600*
H200.194800.054600.199200.0790*
H210.14270−0.027000.085200.0810*
H240.04090−0.13130−0.013500.0870*
H25−0.05840−0.20020−0.048300.0850*
H20.593 (3)0.867 (3)0.555 (3)0.036 (14)*
H30.486 (3)0.868 (4)0.409 (4)0.061 (16)*
H5A0.595701.019200.690500.1340*
H5B0.624100.975100.774100.1340*
H40.397 (3)0.897 (3)0.435 (3)0.039 (15)*
H6A0.674400.920000.690400.1380*0.75 (3)
H6B0.659300.819300.678300.1380*0.75 (3)
H6C0.688600.861900.762700.1380*0.75 (3)
H7A0.509600.827500.693500.1160*
H7B0.585200.820400.771800.1160*
H7C0.563600.761300.697300.1160*
H5C0.543300.987000.712500.1340*
H6A10.669900.862600.679400.1380*0.25 (3)
H6A20.624300.778700.662200.1380*0.25 (3)
H6A30.672600.814100.750300.1380*0.25 (3)
H27A0.249700.853100.207900.1400*
H27B0.243400.777200.151400.1400*
H27C0.284700.862500.159300.1400*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0334 (5)0.0360 (5)0.0257 (5)0.00000.0151 (4)0.0000
N10.035 (2)0.042 (2)0.028 (2)0.0003 (18)0.0168 (19)−0.0034 (18)
N20.042 (2)0.035 (2)0.034 (2)−0.0035 (19)0.015 (2)0.0018 (17)
N30.039 (2)0.042 (2)0.036 (2)−0.0011 (19)0.020 (2)−0.0032 (18)
C80.035 (3)0.060 (3)0.030 (3)−0.001 (2)0.015 (2)−0.005 (2)
C90.046 (3)0.081 (4)0.034 (3)−0.016 (3)0.021 (3)−0.019 (3)
C100.077 (4)0.062 (4)0.055 (4)−0.023 (3)0.045 (4)−0.029 (3)
C110.062 (4)0.046 (3)0.051 (4)−0.010 (3)0.041 (3)−0.014 (3)
C120.043 (3)0.040 (3)0.035 (3)−0.003 (2)0.028 (2)−0.004 (2)
C130.092 (5)0.039 (3)0.087 (5)−0.016 (3)0.064 (4)−0.015 (3)
C140.042 (3)0.043 (3)0.057 (4)0.007 (3)0.016 (3)−0.001 (3)
C150.062 (4)0.050 (4)0.063 (4)0.008 (3)0.014 (4)0.007 (3)
C160.069 (4)0.043 (3)0.046 (4)0.000 (3)−0.003 (3)0.014 (3)
C170.063 (4)0.039 (3)0.034 (3)−0.014 (3)0.010 (3)0.005 (2)
C180.047 (3)0.033 (3)0.035 (3)−0.009 (2)0.015 (3)−0.001 (2)
C190.044 (3)0.057 (3)0.051 (3)−0.001 (3)0.027 (3)−0.002 (3)
C200.053 (4)0.085 (5)0.078 (5)0.008 (3)0.047 (4)0.015 (4)
C210.074 (5)0.091 (5)0.064 (5)0.021 (4)0.054 (4)0.018 (4)
C220.077 (4)0.059 (3)0.051 (4)0.034 (3)0.043 (3)0.016 (3)
C230.049 (3)0.040 (3)0.034 (3)0.014 (2)0.023 (3)0.005 (2)
C240.105 (6)0.078 (4)0.051 (4)0.027 (4)0.054 (4)0.000 (3)
C250.104 (6)0.059 (4)0.041 (4)0.022 (4)0.035 (4)−0.005 (3)
Ni20.0394 (4)0.0561 (4)0.0325 (4)0.0045 (3)0.0185 (3)−0.0031 (3)
Cl10.0540 (9)0.0980 (12)0.0409 (8)0.0098 (8)0.0297 (7)0.0020 (7)
Cl20.0496 (8)0.0748 (10)0.0400 (8)0.0050 (7)0.0181 (7)−0.0152 (7)
Cl30.0476 (8)0.0590 (8)0.0495 (9)−0.0008 (6)0.0254 (7)0.0015 (6)
S10.0413 (7)0.0626 (8)0.0318 (7)0.0068 (6)0.0203 (6)−0.0018 (6)
N40.042 (3)0.053 (3)0.026 (2)0.000 (2)0.018 (2)−0.0013 (19)
N50.039 (2)0.051 (2)0.026 (2)0.0010 (19)0.019 (2)0.0021 (18)
C10.041 (3)0.040 (3)0.027 (3)−0.001 (2)0.019 (2)0.002 (2)
C20.039 (3)0.067 (4)0.043 (3)−0.004 (3)0.026 (3)−0.003 (3)
C30.051 (3)0.061 (3)0.040 (3)−0.003 (3)0.030 (3)0.000 (3)
C40.040 (3)0.065 (3)0.029 (3)0.004 (3)0.018 (2)0.006 (2)
C50.096 (6)0.076 (5)0.040 (4)−0.009 (4)0.003 (4)−0.008 (3)
C60.036 (6)0.183 (16)0.043 (6)0.002 (7)0.012 (6)0.004 (9)
C70.080 (5)0.091 (5)0.050 (4)−0.001 (4)0.029 (4)0.023 (3)
C6A0.036 (6)0.183 (16)0.043 (6)0.002 (7)0.012 (6)0.004 (9)
N60.103 (5)0.105 (5)0.062 (4)0.008 (4)0.043 (4)0.005 (4)
C260.088 (5)0.066 (4)0.054 (4)−0.010 (4)0.045 (4)−0.002 (3)
C270.099 (6)0.080 (5)0.073 (5)0.004 (4)0.030 (5)0.006 (4)

Geometric parameters (Å, °)

Ni1—N12.095 (3)C21—C221.395 (12)
Ni1—N22.079 (3)C22—C241.450 (10)
Ni1—N32.101 (5)C22—C231.407 (10)
Ni1—N1i2.095 (3)C24—C251.337 (13)
Ni1—N2i2.079 (3)C8—H80.9300
Ni1—N3i2.101 (5)C9—H90.9300
Ni2—Cl22.2753 (16)C10—H100.9300
Ni2—Cl32.2507 (15)C13—H130.9300
Ni2—S12.3054 (17)C14—H140.9300
Ni2—Cl12.253 (2)C15—H150.9300
S1—C11.717 (7)C16—H160.9300
N1—C81.324 (7)C19—H190.9300
N1—C121.359 (6)C20—H200.9300
N2—C181.352 (8)C21—H210.9300
N2—C141.328 (8)C24—H240.9300
N3—C231.357 (6)C25—H250.9300
N3—C191.329 (9)C2—C31.320 (8)
N4—C11.349 (7)C4—C51.504 (9)
N4—C31.361 (9)C4—C6A1.52 (6)
N5—C11.354 (8)C4—C61.536 (19)
N5—C21.388 (8)C4—C71.502 (11)
N5—C41.510 (6)C2—H20.82 (7)
N4—H40.85 (6)C3—H31.02 (7)
N6—C261.118 (11)C5—H5A0.9600
C8—C91.393 (8)C5—H5B0.9600
C9—C101.355 (9)C5—H5C0.9600
C10—C111.402 (9)C6—H6A0.9600
C11—C121.402 (7)C6—H6B0.9600
C11—C131.418 (8)C6—H6C0.9600
C12—C12i1.436 (7)C6A—H6A20.9600
C13—C13i1.344 (10)C6A—H6A30.9500
C14—C151.383 (8)C6A—H6A10.9700
C15—C161.347 (13)C7—H7B0.9600
C16—C171.401 (12)C7—H7C0.9600
C17—C181.417 (7)C7—H7A0.9600
C17—C25i1.412 (12)C26—C271.435 (12)
C18—C23i1.431 (10)C27—H27A0.9600
C19—C201.409 (10)C27—H27B0.9600
C20—C211.341 (10)C27—H27C0.9600
N1—Ni1—N293.42 (13)C8—C9—H9120.00
N1—Ni1—N393.77 (18)C11—C10—H10120.00
N1—Ni1—N1i79.98 (13)C9—C10—H10120.00
N1—Ni1—N2i170.55 (15)C13i—C13—H13119.00
N1—Ni1—N3i90.91 (18)C11—C13—H13119.00
N2—Ni1—N396.30 (18)N2—C14—H14118.00
N1i—Ni1—N2170.55 (15)C15—C14—H14118.00
N2—Ni1—N2i93.90 (13)C14—C15—H15121.00
N2—Ni1—N3i79.49 (18)C16—C15—H15121.00
N1i—Ni1—N390.91 (18)C17—C16—H16120.00
N2i—Ni1—N379.49 (18)C15—C16—H16119.00
N3—Ni1—N3i173.89 (18)N3—C19—H19119.00
N1i—Ni1—N2i93.42 (13)C20—C19—H19119.00
N1i—Ni1—N3i93.77 (18)C19—C20—H20120.00
N2i—Ni1—N3i96.30 (18)C21—C20—H20120.00
Cl1—Ni2—Cl2133.14 (7)C20—C21—H21120.00
Cl1—Ni2—Cl3104.92 (7)C22—C21—H21120.00
Cl1—Ni2—S194.21 (6)C25—C24—H24119.00
Cl2—Ni2—Cl3100.47 (6)C22—C24—H24119.00
Cl2—Ni2—S1107.47 (6)C24—C25—H25119.00
Cl3—Ni2—S1118.25 (6)C17i—C25—H25119.00
Ni2—S1—C1111.11 (19)N4—C1—N5106.5 (6)
Ni1—N1—C8129.5 (3)S1—C1—N5128.4 (4)
Ni1—N1—C12112.5 (3)S1—C1—N4125.1 (5)
C8—N1—C12118.0 (4)N5—C2—C3108.5 (6)
C14—N2—C18118.0 (4)N4—C3—C2107.3 (6)
Ni1—N2—C18112.9 (4)N5—C4—C6110.6 (7)
Ni1—N2—C14128.9 (4)N5—C4—C5109.7 (5)
Ni1—N3—C19129.3 (4)C5—C4—C6104.1 (10)
C19—N3—C23118.1 (5)C5—C4—C7111.4 (6)
Ni1—N3—C23112.5 (4)C5—C4—C6A129 (2)
C1—N4—C3110.0 (5)C6—C4—C7112.5 (10)
C2—N5—C4124.5 (5)C6A—C4—C793 (2)
C1—N5—C2107.7 (4)N5—C4—C7108.5 (5)
C1—N5—C4127.7 (5)N5—C4—C6A104.0 (19)
C1—N4—H4121 (5)N5—C2—H2118 (4)
C3—N4—H4128 (5)C3—C2—H2133 (4)
N1—C8—C9122.4 (5)N4—C3—H3120 (4)
C8—C9—C10120.1 (5)C2—C3—H3132 (4)
C9—C10—C11119.5 (5)C4—C5—H5A109.00
C10—C11—C12117.1 (5)C4—C5—H5B110.00
C12—C11—C13119.2 (5)C4—C5—H5C110.00
C10—C11—C13123.7 (5)H5A—C5—H5B109.00
N1—C12—C12i117.6 (4)H5A—C5—H5C109.00
N1—C12—C11123.0 (5)H5B—C5—H5C109.00
C11—C12—C12i119.5 (4)C4—C6—H6A110.00
C11—C13—C13i121.3 (6)C4—C6—H6B110.00
N2—C14—C15123.5 (7)C4—C6—H6C109.00
C14—C15—C16118.6 (8)H6A—C6—H6B109.00
C15—C16—C17121.3 (6)H6A—C6—H6C109.00
C16—C17—C18116.1 (6)H6B—C6—H6C109.00
C18—C17—C25i118.7 (6)C4—C6A—H6A2110.00
C16—C17—C25i125.2 (5)C4—C6A—H6A3110.00
N2—C18—C23i117.6 (4)H6A1—C6A—H6A2109.00
N2—C18—C17122.5 (6)H6A1—C6A—H6A3109.00
C17—C18—C23i119.9 (6)H6A2—C6A—H6A3110.00
N3—C19—C20122.1 (5)C4—C6A—H6A1109.00
C19—C20—C21119.5 (7)H7B—C7—H7C109.00
C20—C21—C22120.5 (8)C4—C7—H7A109.00
C21—C22—C23117.0 (6)C4—C7—H7B109.00
C21—C22—C24125.7 (8)C4—C7—H7C109.00
C23—C22—C24117.3 (7)H7A—C7—H7B110.00
N3—C23—C18i116.9 (6)H7A—C7—H7C110.00
C18i—C23—C22120.3 (5)N6—C26—C27179.9 (12)
N3—C23—C22122.8 (6)C26—C27—H27A109.00
C22—C24—C25122.1 (8)C26—C27—H27B110.00
C17i—C25—C24121.6 (6)C26—C27—H27C110.00
N1—C8—H8119.00H27A—C27—H27B109.00
C9—C8—H8119.00H27A—C27—H27C110.00
C10—C9—H9120.00H27B—C27—H27C109.00
N2—Ni1—N1—C88.6 (6)C1—N5—C2—C3−0.6 (7)
N3—Ni1—N1—C8−87.9 (6)C4—N5—C2—C3176.5 (5)
N1i—Ni1—N1—C8−178.2 (6)C2—N5—C1—N40.5 (6)
N3i—Ni1—N1—C888.2 (6)C2—N5—C4—C7−117.4 (7)
N2—Ni1—N1—C12−173.1 (4)C1—N5—C4—C759.2 (8)
N3—Ni1—N1—C1290.3 (4)C4—N5—C1—N4−176.5 (5)
N1i—Ni1—N1—C120.1 (4)C2—N5—C1—S1−177.8 (4)
N3i—Ni1—N1—C12−93.6 (4)C2—N5—C4—C5120.8 (7)
N1—Ni1—N2—C14−92.3 (4)C1—N5—C4—C6−176.9 (11)
N3—Ni1—N2—C141.9 (4)C2—N5—C4—C66.5 (12)
N2i—Ni1—N2—C1481.7 (4)N1—C8—C9—C100.5 (11)
N3i—Ni1—N2—C14177.4 (4)C8—C9—C10—C11−1.8 (11)
N1—Ni1—N2—C1884.0 (3)C9—C10—C11—C121.4 (11)
N3—Ni1—N2—C18178.2 (3)C9—C10—C11—C13−179.0 (7)
N2i—Ni1—N2—C18−102.0 (3)C12—C11—C13—C13i−2.3 (11)
N3i—Ni1—N2—C18−6.3 (3)C10—C11—C12—N10.2 (10)
N1—Ni1—N3—C199.7 (5)C13—C11—C12—C12i0.9 (10)
N2—Ni1—N3—C19−84.2 (5)C10—C11—C12—C12i−179.6 (6)
N1i—Ni1—N3—C1989.7 (5)C13—C11—C12—N1−179.4 (6)
N2i—Ni1—N3—C19−177.0 (5)C10—C11—C13—C13i178.1 (8)
N1—Ni1—N3—C23−167.3 (3)N1—C12—C12i—C11i−180.0 (6)
N2—Ni1—N3—C2398.9 (3)C11—C12—C12i—N1i−180.0 (6)
N1i—Ni1—N3—C23−87.3 (3)N1—C12—C12i—N1i0.3 (8)
N2i—Ni1—N3—C236.1 (3)C11—C12—C12i—C11i−0.2 (9)
Cl3—Ni2—S1—C1−81.0 (2)C11—C13—C13i—C11i3.1 (12)
Cl1—Ni2—S1—C1169.56 (19)N2—C14—C15—C16−2.6 (9)
Cl2—Ni2—S1—C131.7 (2)C14—C15—C16—C172.5 (10)
Ni2—S1—C1—N4−3.1 (5)C15—C16—C17—C25i178.2 (6)
Ni2—S1—C1—N5175.0 (4)C15—C16—C17—C18−0.4 (9)
Ni1—N1—C8—C9179.3 (5)C18—C17—C25i—C24i1.8 (9)
C8—N1—C12—C12i178.3 (6)C16—C17—C25i—C24i−176.8 (7)
Ni1—N1—C12—C11−180.0 (5)C16—C17—C18—C23i177.6 (5)
C12—N1—C8—C91.1 (10)C25i—C17—C18—N2179.4 (5)
Ni1—N1—C12—C12i−0.2 (6)C25i—C17—C18—C23i−1.1 (8)
C8—N1—C12—C11−1.5 (9)C16—C17—C18—N2−1.9 (8)
Ni1—N2—C18—C23i5.6 (5)C17—C18—C23i—C22i−0.5 (8)
C14—N2—C18—C172.0 (7)N2—C18—C23i—N3i−0.4 (7)
Ni1—N2—C18—C17−174.8 (4)C17—C18—C23i—N3i−179.9 (5)
Ni1—N2—C14—C15176.6 (4)N2—C18—C23i—C22i179.0 (5)
C14—N2—C18—C23i−177.6 (4)N3—C19—C20—C210.4 (10)
C18—N2—C14—C150.4 (7)C19—C20—C21—C22−1.8 (10)
Ni1—N3—C19—C20−175.5 (4)C20—C21—C22—C24−179.1 (7)
C23—N3—C19—C201.3 (8)C20—C21—C22—C231.4 (10)
C19—N3—C23—C22−1.7 (8)C24—C22—C23—C18i1.5 (8)
Ni1—N3—C23—C18i−5.0 (6)C21—C22—C23—N30.4 (9)
C19—N3—C23—C18i177.6 (5)C24—C22—C23—N3−179.2 (5)
Ni1—N3—C23—C22175.6 (4)C23—C22—C24—C25−0.9 (10)
C3—N4—C1—N5−0.3 (6)C21—C22—C24—C25179.6 (7)
C3—N4—C1—S1178.2 (4)C21—C22—C23—C18i−179.0 (6)
C1—N4—C3—C2−0.1 (7)C22—C24—C25—C17i−0.8 (11)
C4—N5—C1—S15.2 (8)N5—C2—C3—N40.5 (7)
C1—N5—C4—C5−62.7 (8)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.85 (6)2.37 (7)3.178 (6)160 (6)
C2—H2···Cl3ii0.82 (7)2.77 (7)3.552 (8)160 (4)
C5—H5C···S10.962.753.402 (9)126
C7—H7A···S10.962.683.409 (8)133
C10—H10···Cl3iii0.932.723.557 (7)151
C25—H25···N6iv0.932.603.502 (9)162

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) −x+1/2, −y+3/2, −z+1; (iv) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2050).

References

  • Brandenburg, K. (1999). DIAMOND Version 1.2c. University of Bonn, Germany.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166–m168. [PubMed]
  • Fang, H. & Dai, X. (2006). Acta Cryst. E62, m3565–m3566.
  • Fatimi, J., Lagorce, J. F., Chabernaud, M. L., Buxeraud, J. & Raby, C. (1994). Boll. Chim. Farm.133, 151–155. [PubMed]
  • Iradyan, M. A., Ayvazyan, A. K., Mirzoyan, V. S., Paronikyan, G. M., Sarkisyan, T. P., Stepanyan, G. M., Arsenyan, F. G. & Garibdzhanyan, B. T. (1987). Pharm. Chem. J.21, 403–408.
  • Kister, J., Assef, G., Miller, G. & Metzer, J. (1979). Can. J. Chem.57, 813–821.
  • Senda, S., Ohki, Y., Hirayama, T., Toda, D., Chen, J.-L., Matsumoto, T., Kawaguchi, H. & Tatsumi, K. (2006). Inorg. Chem.45, 9914–9925. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suescun, L., Mombrú, A. W. & Mariezcurrena, R. A. (1999). Acta Cryst. C55, 1991–1993.
  • Yu, J.-H., Jia, H.-B., Pan, L.-Y., Yang, Q.-X., Wang, T.-G., Xu, J.-Q., Cui, X.-B., Liu, Y.-J., Li, Y.-Z., Lu, C.-H. & Ma, T.-H. (2003). J. Solid State Chem.175, 152–158.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography