PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1249.
Published online 2008 June 13. doi:  10.1107/S1600536808016231
PMCID: PMC2961698

(1R,2R,5R,6R,9S,10S,13S,14S)-1,6,7,8,9,14,15,16,17,17-Decachloro­penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­deca-7,15-diene

Abstract

The title compound, C18H14Cl10, is a decachlorinated commercial flame retardant. The structure determination confirms the relative stereochemistry. The central eight-membered ring is in a chair-type conformation. In the crystal structure, there are no significant inter­molecular inter­actions and mol­ecules are separated by normal van der Waals distances.

Related literature

For related literature, see: Garcia et al. (1991 [triangle]); Hoh et al. (2006 [triangle]); Qiu et al. (2007 [triangle]); Sverko et al. (2008 [triangle]); Tomy et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1249-scheme1.jpg

Experimental

Crystal data

  • C18H14Cl10
  • M r = 584.79
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1249-efi1.jpg
  • a = 11.4341 (2) Å
  • b = 12.9704 (3) Å
  • c = 15.0389 (4) Å
  • V = 2230.34 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.25 mm−1
  • T = 150 (1) K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1995 [triangle]) T min = 0.720, T max = 0.804
  • 17031 measured reflections
  • 5087 independent reflections
  • 4585 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.072
  • S = 1.04
  • 5087 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.32 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2207 Friedel pairs
  • Flack parameter: −0.01 (6)

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016231/bt2716sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016231/bt2716Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

Dechlorane Plus (DP) is a commercial chlorinated flame retardant used in styrenic plastics (http://www.inchem.org/documents/ehc/ehc/ehc192.htm) to protect human life and property against fires. The two major components found in the commercial material are known as syn-DP (1R,2R,5S,6S,9R,10R,13S,14S)-[1,6,7,8,9,14,15,16,17,17,18,18- decachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene] and anti-DP (1R,2R,5R,6R,9S,10S,13S,14S)-[1,6,7,8,9,14,15,16,17,17,18,18- decachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene] (see (1) and (2) respectively, Fig. 1). X-ray structure determinations have already been completed on both compounds (Garcia et al., 1991). There is growing evidence that this flame retardant is becoming a significant environmental contaminant (Hoh et al., 2006; Qiu et al., 2007; Tomy et al., 2007). 3–5 Dechlorinated DP species have also been detected in the environment (Sverko et al., 2008) although very little is known about their identity. It is important to identify these compounds if analytical chemists wish to quantify the total presence of DP, including its dechlorinated homologues, in the environment.

We have synthesized the dechlorinated compound (1R,2R,5R,6R,9S,10S,13S,14S)-1,6,7,8,9,14,15,16,17,17-decachloropentacyclo[ 12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene (compound (3); see Fig. 1). GC/MS and 1H NMR spectroscopy have confirmed the basic structure of (3) as having the DP-like structure with only 10 chlorine atoms. X-ray structure determination of (3) was required to positively confirm the relative stereochemistry.

Experimental

The synthesis of compound (3) was carried out at Wellington Laboratories using proprietary methods. The compound was isolated and purified using chromatographic techniques. For single-crystal X-ray crystallography, colourless crystals were grown from a solution of (3) in toluene.

Refinement

All hydrogen atoms were placed in calculated positions with C—H distances of 0.99 and 1.00 Å and they were included in the refinement in a riding-model approximation with Uiso = 1.2Ueq(C).

Figures

Fig. 1.
Schematic representation of compounds (1), (2) and (3).
Fig. 2.
The molecular structure of the title compound. Displacement ellipsoids are at the 30% probability level. H atoms are not shown.

Crystal data

C18H14Cl10F000 = 1168
Mr = 584.79Dx = 1.742 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17031 reflections
a = 11.4341 (2) Åθ = 2.7–27.5º
b = 12.9704 (3) ŵ = 1.26 mm1
c = 15.0389 (4) ÅT = 150 (1) K
V = 2230.34 (9) Å3Block, colourless
Z = 40.24 × 0.20 × 0.18 mm

Data collection

Bruker–Nonius KappaCCD diffractometer5087 independent reflections
Radiation source: fine-focus sealed tube4585 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 27.5º
T = 150(2) Kθmin = 2.7º
[var phi] scans and ω scans with κ offsetsh = −14→14
Absorption correction: multi-scan(SORTAV; Blessing, 1995)k = −16→16
Tmin = 0.720, Tmax = 0.804l = −19→19
17031 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.03P)2 + 1.117P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.34 e Å3
5087 reflectionsΔρmin = −0.32 e Å3
253 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2207 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.87131 (5)0.78434 (5)0.55246 (4)0.02288 (14)
Cl21.07256 (5)0.66212 (5)0.43725 (5)0.02523 (14)
Cl31.14507 (6)0.81013 (6)0.25760 (5)0.03027 (16)
Cl40.97237 (6)1.01756 (5)0.25571 (5)0.03129 (16)
Cl51.03310 (6)0.98603 (5)0.47707 (4)0.02853 (16)
Cl60.78892 (6)1.00833 (5)0.44082 (5)0.03032 (16)
Cl70.68597 (7)0.61445 (6)−0.03570 (5)0.03760 (18)
Cl80.45590 (8)0.74067 (6)0.04705 (6)0.0468 (2)
Cl90.36780 (6)0.61715 (7)0.23695 (6)0.0441 (2)
Cl100.53873 (7)0.41158 (6)0.26610 (5)0.0406 (2)
C10.7915 (2)0.78678 (19)0.37527 (16)0.0184 (5)
H1A0.71770.81610.40040.022*
C20.8244 (2)0.8505 (2)0.28950 (17)0.0195 (5)
H2A0.76140.90260.27900.023*
C30.8459 (2)0.7930 (2)0.20247 (17)0.0205 (5)
H3A0.89590.73250.21540.025*
H3B0.89070.83890.16240.025*
C40.7364 (2)0.75489 (19)0.15180 (17)0.0197 (5)
H4A0.66560.78170.18180.024*
H4B0.73780.78320.09070.024*
C50.7288 (2)0.63674 (19)0.14688 (17)0.0190 (5)
H5A0.80810.61030.13060.023*
C60.6879 (2)0.57719 (19)0.23264 (17)0.0192 (5)
H6A0.75060.52640.24790.023*
C70.6627 (2)0.6394 (2)0.31572 (17)0.0220 (6)
H7A0.61270.59820.35600.026*
H7B0.61880.70230.29910.026*
C80.7757 (2)0.6710 (2)0.36566 (17)0.0205 (5)
H8A0.77460.63960.42570.025*
H8B0.84400.64250.33350.025*
C90.8936 (2)0.81438 (18)0.43944 (18)0.0186 (5)
C101.0060 (2)0.77145 (19)0.40053 (17)0.0194 (5)
C111.0325 (2)0.8277 (2)0.32990 (17)0.0213 (5)
C120.9372 (2)0.9089 (2)0.32037 (17)0.0212 (5)
C130.9127 (2)0.93046 (19)0.42002 (18)0.0213 (6)
C140.6406 (2)0.5965 (2)0.07546 (17)0.0239 (6)
C150.5203 (2)0.6380 (2)0.09832 (19)0.0258 (6)
C160.4856 (2)0.5901 (2)0.17161 (19)0.0257 (6)
C170.5815 (2)0.5147 (2)0.19615 (19)0.0237 (6)
C180.6255 (3)0.4837 (2)0.10393 (18)0.0252 (6)
H18A0.56640.44620.06830.030*
H18B0.70000.44490.10560.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0260 (3)0.0273 (3)0.0153 (3)−0.0008 (3)0.0011 (3)0.0010 (3)
Cl20.0230 (3)0.0248 (3)0.0278 (4)0.0037 (3)−0.0027 (3)0.0018 (3)
Cl30.0259 (3)0.0390 (4)0.0259 (4)−0.0050 (3)0.0075 (3)−0.0007 (3)
Cl40.0420 (4)0.0240 (3)0.0279 (4)−0.0119 (3)−0.0062 (3)0.0095 (3)
Cl50.0351 (4)0.0252 (3)0.0253 (3)−0.0091 (3)−0.0081 (3)−0.0011 (3)
Cl60.0369 (4)0.0227 (3)0.0313 (4)0.0081 (3)−0.0059 (3)−0.0054 (3)
Cl70.0549 (5)0.0391 (4)0.0189 (3)−0.0113 (4)0.0010 (3)−0.0043 (3)
Cl80.0578 (5)0.0361 (4)0.0465 (5)0.0171 (4)−0.0290 (4)−0.0059 (4)
Cl90.0230 (3)0.0645 (5)0.0447 (5)−0.0044 (4)0.0035 (3)−0.0276 (4)
Cl100.0526 (5)0.0323 (4)0.0367 (4)−0.0228 (4)−0.0016 (4)0.0057 (3)
C10.0190 (12)0.0201 (12)0.0160 (13)−0.0019 (10)−0.0024 (10)0.0008 (10)
C20.0224 (12)0.0174 (12)0.0188 (13)0.0012 (10)−0.0026 (10)0.0015 (10)
C30.0218 (12)0.0225 (13)0.0172 (13)−0.0028 (11)−0.0007 (10)0.0013 (11)
C40.0257 (13)0.0186 (13)0.0150 (13)−0.0049 (10)−0.0029 (10)0.0019 (10)
C50.0192 (12)0.0185 (12)0.0193 (13)0.0009 (10)−0.0015 (10)−0.0029 (10)
C60.0196 (11)0.0190 (12)0.0190 (13)−0.0015 (10)−0.0026 (10)0.0016 (10)
C70.0190 (12)0.0259 (14)0.0210 (13)−0.0058 (11)−0.0003 (10)0.0021 (11)
C80.0223 (13)0.0207 (13)0.0186 (13)−0.0022 (11)−0.0013 (11)0.0016 (11)
C90.0220 (12)0.0174 (12)0.0163 (12)0.0005 (9)−0.0007 (10)0.0028 (10)
C100.0191 (12)0.0195 (12)0.0197 (13)−0.0007 (10)−0.0037 (10)−0.0010 (10)
C110.0195 (12)0.0233 (13)0.0210 (14)−0.0045 (11)0.0010 (11)−0.0051 (11)
C120.0276 (14)0.0182 (12)0.0179 (13)−0.0045 (11)−0.0028 (11)0.0036 (10)
C130.0235 (12)0.0185 (13)0.0220 (15)−0.0008 (11)−0.0020 (10)−0.0028 (10)
C140.0306 (14)0.0222 (13)0.0190 (14)0.0001 (12)−0.0026 (11)−0.0034 (11)
C150.0246 (13)0.0214 (13)0.0315 (16)0.0026 (11)−0.0145 (12)−0.0078 (11)
C160.0179 (12)0.0310 (15)0.0282 (16)−0.0047 (12)−0.0035 (11)−0.0109 (12)
C170.0262 (13)0.0181 (12)0.0267 (15)−0.0055 (11)0.0001 (11)−0.0004 (11)
C180.0299 (14)0.0196 (13)0.0261 (14)−0.0021 (12)−0.0017 (12)−0.0036 (11)

Geometric parameters (Å, °)

Cl1—C91.762 (3)C5—C141.563 (4)
Cl2—C101.701 (3)C5—C61.574 (3)
Cl3—C111.700 (3)C5—H5A1.0000
Cl4—C121.758 (3)C6—C71.515 (4)
Cl5—C131.775 (3)C6—C171.562 (3)
Cl6—C131.766 (3)C6—H6A1.0000
Cl7—C141.766 (3)C7—C81.550 (3)
Cl8—C151.706 (3)C7—H7A0.9900
Cl9—C161.704 (3)C7—H7B0.9900
Cl10—C171.771 (3)C8—H8A0.9900
C1—C81.519 (3)C8—H8B0.9900
C1—C91.557 (3)C9—C101.518 (3)
C1—C21.577 (3)C9—C131.549 (3)
C1—H1A1.0000C10—C111.324 (4)
C2—C31.526 (4)C11—C121.522 (4)
C2—C121.567 (4)C12—C131.550 (4)
C2—H2A1.0000C14—C151.517 (4)
C3—C41.547 (3)C14—C181.534 (4)
C3—H3A0.9900C15—C161.326 (4)
C3—H3B0.9900C16—C171.514 (4)
C4—C51.537 (3)C17—C181.529 (4)
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C8—C1—C9112.1 (2)C10—C9—C1399.5 (2)
C8—C1—C2117.9 (2)C10—C9—C1108.2 (2)
C9—C1—C2102.00 (19)C13—C9—C1102.2 (2)
C8—C1—H1A108.1C10—C9—Cl1114.42 (17)
C9—C1—H1A108.1C13—C9—Cl1114.65 (18)
C2—C1—H1A108.1C1—C9—Cl1116.00 (18)
C3—C2—C12110.9 (2)C11—C10—C9107.5 (2)
C3—C2—C1118.9 (2)C11—C10—Cl2128.1 (2)
C12—C2—C1101.96 (19)C9—C10—Cl2124.01 (19)
C3—C2—H2A108.2C10—C11—C12107.0 (2)
C12—C2—H2A108.2C10—C11—Cl3127.8 (2)
C1—C2—H2A108.2C12—C11—Cl3125.06 (19)
C2—C3—C4116.6 (2)C11—C12—C1399.4 (2)
C2—C3—H3A108.1C11—C12—C2106.4 (2)
C4—C3—H3A108.1C13—C12—C2103.0 (2)
C2—C3—H3B108.1C11—C12—Cl4116.30 (19)
C4—C3—H3B108.1C13—C12—Cl4115.59 (18)
H3A—C3—H3B107.3C2—C12—Cl4114.32 (18)
C5—C4—C3112.9 (2)C9—C13—C1291.88 (19)
C5—C4—H4A109.0C9—C13—Cl6114.20 (18)
C3—C4—H4A109.0C12—C13—Cl6114.79 (18)
C5—C4—H4B109.0C9—C13—Cl5114.36 (18)
C3—C4—H4B109.0C12—C13—Cl5113.56 (18)
H4A—C4—H4B107.8Cl6—C13—Cl5107.68 (13)
C4—C5—C14113.8 (2)C15—C14—C18100.0 (2)
C4—C5—C6117.8 (2)C15—C14—C5108.1 (2)
C14—C5—C6101.98 (19)C18—C14—C5101.5 (2)
C4—C5—H5A107.6C15—C14—Cl7115.73 (19)
C14—C5—H5A107.6C18—C14—Cl7115.04 (18)
C6—C5—H5A107.6C5—C14—Cl7114.65 (19)
C7—C6—C17114.7 (2)C16—C15—C14107.1 (2)
C7—C6—C5118.1 (2)C16—C15—Cl8127.8 (2)
C17—C6—C5101.4 (2)C14—C15—Cl8124.5 (2)
C7—C6—H6A107.3C15—C16—C17106.8 (2)
C17—C6—H6A107.3C15—C16—Cl9128.3 (2)
C5—C6—H6A107.3C17—C16—Cl9124.4 (2)
C6—C7—C8112.5 (2)C16—C17—C18100.8 (2)
C6—C7—H7A109.1C16—C17—C6108.4 (2)
C8—C7—H7A109.1C18—C17—C6101.5 (2)
C6—C7—H7B109.1C16—C17—Cl10115.6 (2)
C8—C7—H7B109.1C18—C17—Cl10115.51 (19)
H7A—C7—H7B107.8C6—C17—Cl10113.47 (19)
C1—C8—C7114.0 (2)C17—C18—C1492.2 (2)
C1—C8—H8A108.8C17—C18—H18A113.2
C7—C8—H8A108.8C14—C18—H18A113.2
C1—C8—H8B108.8C17—C18—H18B113.2
C7—C8—H8B108.8C14—C18—H18B113.2
H8A—C8—H8B107.6H18A—C18—H18B110.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2716).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Tetrahedron Lett.32, 3289–3292.
  • Hoh, E., Zhu, L. & Hites, R. A. (2006). Environ. Sci. Technol.40, 1184–1189. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Qiu, X., Marvin, C. H. & Hites, R. A. (2007). Environ. Sci. Technol.41, 2249–2254. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sverko, E., Tomy, G. T., Marvin, C. H., Zaruk, D., Reiner, E., Helm, P. A., Hill, B. & McCarry, B. E. (2008). Environ. Sci. Technol.42, 361–366. [PubMed]
  • Tomy, G. T., Pleskach, K., Ismail, N., Whittle, M., Helm, P. A., Sverko, E., Zaruk, D. & Marvin, C. H. (2007). Environ. Sci. Technol.41, 2249–2254. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography