PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m974.
Published online 2008 June 28. doi:  10.1107/S1600536808018916
PMCID: PMC2961692

catena-Poly[[tripyridine­nickel(II)]-μ-5-bromo­isophthalato]

Abstract

The title compound, [Ni(C8H3BrO4)(C5H5N)3], is the first structurally characterized complex with a transition metal coordinated by a 5-bromo­isophthalate anion. The NiII ion is coordinated by three O atoms from the carboxyl­ate groups and three N atoms from three pyridine ligands in a distorted octa­hedral coordination geometry. The 5-bromo­isophthalate anion is planar within 0.057 (2) Å. The two carboxyl­ate groups of the ligand coordinate the NiII ions in a chelating and monodentate mode, linking the metal atoms into infinite chains along the [010] direction. These chains are stacked together via strong π–π inter­actions between the pyridine rings [centroid–centroid distance 3.601 (4) Å], forming a three-dimensional motif.

Related literature

For related literature, see: Therrien et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m974-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H3BrO4)(C5H5N)3]
  • M r = 539.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m974-efi2.jpg
  • a = 19.6621 (6) Å
  • b = 16.0190 (6) Å
  • c = 14.8755 (5) Å
  • β = 111.504 (2)°
  • V = 4359.2 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.76 mm−1
  • T = 296 (2) K
  • 0.22 × 0.20 × 0.08 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.582, T max = 0.809
  • 22727 measured reflections
  • 5402 independent reflections
  • 4195 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.096
  • S = 1.05
  • 5402 reflections
  • 289 parameters
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018916/fj2127sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018916/fj2127Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Professor D. Wang for his help.

supplementary crystallographic information

Comment

The 5-bromoisophthalic acid ligand (H2BIPA) was hitherto reported in its molecular form in the cystal structure of its cocrystal complex (Therrien et al., 2005). This paper provides the fist example of its structurally characterized complex with a transition metal; the ligand in this complex is twice deprotonated.

The asymmetric unit of Ni(BIPA)(C5H5N)3 occupies a general position in the unit cell; the Ni atom is coordinated by four O atoms from the carboxylicate groups and three N atoms from the pyridine ligands (Ni1—N2 2.143 (2), Ni1—O2 2.165 (2), Ni1—O1 2.202 (2), Ni1—N1 2.204 (2), Ni1—N3 2.204 (2) and Ni1—O3 1.996 (2) Å) (Fig. 1). The BIPA ligand has essentially planar conformation, the maximum deviation of the O3 atom from its mean plane being 0.057 (2) Å. The geometry of the ligand is similar to the one observed in Therrien et al., (2005).

No guest molecule or Hydrogen bond was detected in the structure; The two carboxylate groups of the ligand coordinated with the Ni(II) in monodentate and chelated mode, respectively, linking the Ni(II) ion into an infinte chain along the (010) direction. The chains are stacked together via the strong π-π interactions between the pyridine rings to form a three-dimensional motif.(Fig. 2).

Experimental

NiCl2.4H2O (0.5 mmol, 101 mg) and 5-bromoisophthalic acid (0.5 mmol, 123 mg) were added to 30 ml of distilled water. After stirring for 15 min at room temperature, the pH value was adjusted to 6 by few drops of pyridine, and clear solution was allowed to evaporate in the ventilating cabinet. Light green plate crystals of the title compound were obtained after 4 days, in yields of 35%. The crystals were filtered, washed by cold EtOH and dried in the air.

Refinement

All of the H atoms were positioned geometrically and refined using a riding model with C—H = 0.930 Å, with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
Molecular structure showing 50% probability displacement ellipsoids. The unlabeled atoms are derived from the reference atoms by means of the (1.5 - x, -1/2 + y, 1.5 - z) symmetry transformation..
Fig. 2.
Packing diagram viewed down the b axis,

Crystal data

[Ni(C8H3BrO4)(C5H5N)3]F000 = 2176
Mr = 539.02Dx = 1.643 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9035 reflections
a = 19.6621 (6) Åθ = 2.7–28.7º
b = 16.0190 (6) ŵ = 2.76 mm1
c = 14.8755 (5) ÅT = 296 (2) K
β = 111.504 (2)ºPlate, green
V = 4359.2 (3) Å30.22 × 0.20 × 0.08 mm
Z = 8

Data collection

Bruker SMART 1K CCD area-detector diffractometer5402 independent reflections
Radiation source: fine-focus sealed tube4195 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 296(2) Kθmax = 28.3º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −26→26
Tmin = 0.582, Tmax = 0.809k = −21→21
22727 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0529P)2 + 2.0236P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5402 reflectionsΔρmax = 0.65 e Å3
289 parametersΔρmin = −0.34 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.104271 (13)1.027190 (17)0.93289 (2)0.04600 (10)
Ni10.833627 (16)0.667412 (18)0.78863 (2)0.03305 (10)
O10.92550 (9)0.75627 (10)0.83248 (13)0.0385 (4)
N10.83251 (11)0.66980 (12)0.93619 (15)0.0352 (4)
C10.87970 (13)0.81533 (14)0.80832 (16)0.0313 (5)
O20.81214 (9)0.80030 (10)0.77426 (13)0.0386 (4)
N20.90493 (11)0.56123 (12)0.82571 (14)0.0333 (4)
C20.82483 (13)1.12204 (14)0.78305 (16)0.0314 (5)
O30.75769 (9)1.09924 (11)0.75262 (12)0.0396 (4)
N30.83124 (11)0.66766 (12)0.63935 (15)0.0351 (4)
C30.87912 (12)1.05099 (14)0.81091 (16)0.0282 (4)
O40.84705 (11)1.19426 (11)0.79268 (15)0.0487 (5)
C40.95349 (12)1.06846 (14)0.85107 (16)0.0309 (5)
H40.96981.12340.86090.037*
C51.00279 (12)1.00317 (15)0.87614 (16)0.0311 (5)
C60.98030 (12)0.92097 (14)0.86223 (17)0.0318 (5)
H61.01430.87780.87960.038*
C70.90594 (12)0.90378 (13)0.82181 (16)0.0291 (5)
C80.85606 (13)0.96895 (14)0.79651 (16)0.0298 (5)
H80.80630.95720.76940.036*
C90.85644 (15)0.73386 (16)0.99719 (19)0.0425 (6)
H90.88090.77700.97990.051*
C100.79950 (15)0.60768 (16)0.9655 (2)0.0426 (6)
H100.78340.56140.92560.051*
C110.84689 (16)0.73964 (17)1.0846 (2)0.0467 (6)
H110.86460.78551.12470.056*
C120.78831 (15)0.60906 (19)1.0510 (2)0.0481 (7)
H120.76550.56441.06840.058*
C130.81117 (16)0.67711 (18)1.1112 (2)0.0479 (7)
H130.80250.68031.16850.058*
C140.97593 (15)0.57400 (17)0.8668 (2)0.0509 (7)
H140.99240.62880.87940.061*
C150.88262 (15)0.48241 (16)0.8088 (2)0.0452 (6)
H150.83280.47210.77910.054*
C161.02719 (16)0.5108 (2)0.8921 (3)0.0647 (9)
H161.07680.52280.92000.078*
C170.92961 (17)0.41524 (17)0.8331 (2)0.0520 (7)
H170.91180.36090.82130.062*
C181.00334 (17)0.43030 (19)0.8752 (2)0.0569 (8)
H181.03650.38630.89180.068*
C190.77634 (15)0.63156 (16)0.56745 (19)0.0419 (6)
H190.74270.60000.58350.050*
C200.87919 (15)0.71115 (17)0.6137 (2)0.0434 (6)
H200.91850.73590.66210.052*
C210.76665 (16)0.63834 (18)0.4714 (2)0.0478 (7)
H210.72760.61180.42440.057*
C220.87340 (17)0.72126 (19)0.5186 (2)0.0504 (7)
H220.90800.75220.50400.061*
C230.81539 (16)0.68473 (18)0.4458 (2)0.0488 (7)
H230.80960.69140.38130.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02529 (13)0.04761 (17)0.05865 (18)−0.00510 (11)0.00777 (11)−0.00334 (12)
Ni10.02778 (16)0.02420 (15)0.04311 (19)−0.00138 (11)0.00821 (13)−0.00097 (12)
O10.0380 (9)0.0225 (8)0.0521 (10)0.0005 (7)0.0130 (8)−0.0004 (7)
N10.0341 (11)0.0288 (10)0.0404 (11)0.0037 (8)0.0107 (9)−0.0003 (8)
C10.0334 (12)0.0258 (11)0.0337 (12)−0.0037 (9)0.0113 (10)0.0000 (9)
O20.0331 (9)0.0283 (8)0.0503 (10)−0.0051 (7)0.0103 (8)−0.0015 (7)
N20.0304 (10)0.0277 (9)0.0387 (11)0.0032 (8)0.0091 (8)0.0007 (8)
C20.0350 (12)0.0280 (11)0.0306 (11)0.0075 (9)0.0114 (10)0.0030 (9)
O30.0276 (9)0.0359 (9)0.0488 (10)0.0089 (7)0.0063 (7)0.0004 (8)
N30.0340 (11)0.0285 (10)0.0404 (11)0.0035 (8)0.0109 (9)0.0002 (8)
C30.0281 (11)0.0254 (10)0.0312 (11)0.0016 (8)0.0108 (9)0.0001 (9)
O40.0485 (11)0.0266 (9)0.0697 (13)0.0064 (8)0.0203 (10)0.0038 (8)
C40.0316 (12)0.0230 (10)0.0371 (12)−0.0023 (9)0.0116 (10)−0.0016 (9)
C50.0215 (10)0.0338 (11)0.0343 (12)−0.0012 (9)0.0061 (9)−0.0003 (9)
C60.0267 (11)0.0272 (11)0.0384 (12)0.0050 (9)0.0084 (9)0.0016 (9)
C70.0300 (11)0.0242 (10)0.0324 (11)0.0006 (9)0.0107 (9)0.0006 (9)
C80.0257 (11)0.0272 (11)0.0350 (12)−0.0004 (9)0.0094 (9)0.0011 (9)
C90.0464 (15)0.0333 (13)0.0454 (15)0.0002 (11)0.0140 (12)−0.0009 (11)
C100.0405 (14)0.0361 (13)0.0466 (15)−0.0023 (11)0.0105 (11)0.0017 (11)
C110.0585 (17)0.0363 (14)0.0412 (14)0.0086 (13)0.0136 (13)−0.0008 (11)
C120.0406 (15)0.0534 (16)0.0490 (16)0.0000 (13)0.0149 (12)0.0109 (13)
C130.0452 (15)0.0554 (17)0.0435 (15)0.0153 (13)0.0166 (12)0.0060 (13)
C140.0346 (14)0.0347 (14)0.074 (2)0.0021 (11)0.0089 (13)0.0009 (13)
C150.0343 (13)0.0351 (13)0.0604 (17)0.0018 (11)0.0107 (12)−0.0027 (12)
C160.0293 (14)0.0547 (19)0.097 (3)0.0095 (13)0.0075 (16)0.0062 (18)
C170.0551 (18)0.0295 (13)0.0676 (19)0.0070 (12)0.0177 (15)−0.0009 (13)
C180.0523 (18)0.0429 (16)0.071 (2)0.0222 (14)0.0174 (15)0.0094 (14)
C190.0419 (14)0.0368 (13)0.0467 (15)−0.0030 (11)0.0157 (12)−0.0055 (11)
C200.0361 (13)0.0458 (15)0.0473 (15)−0.0007 (11)0.0140 (12)−0.0021 (12)
C210.0442 (16)0.0507 (16)0.0422 (15)0.0023 (13)0.0082 (12)−0.0080 (12)
C220.0504 (17)0.0507 (16)0.0545 (17)−0.0018 (13)0.0244 (14)0.0044 (14)
C230.0555 (17)0.0479 (16)0.0425 (15)0.0132 (13)0.0172 (13)0.0035 (12)

Geometric parameters (Å, °)

Br1—C51.899 (2)C8—H80.9300
Ni1—O3i1.9963 (16)C9—C111.384 (4)
Ni1—N22.1439 (19)C9—H90.9300
Ni1—O22.1655 (17)C10—C121.368 (4)
Ni1—O12.2024 (17)C10—H100.9300
Ni1—N12.204 (2)C11—C131.362 (4)
Ni1—N32.204 (2)C11—H110.9300
O1—C11.264 (3)C12—C131.377 (4)
N1—C91.336 (3)C12—H120.9300
N1—C101.345 (3)C13—H130.9300
C1—O21.259 (3)C14—C161.380 (4)
C1—C71.496 (3)C14—H140.9300
N2—C141.318 (3)C15—C171.377 (4)
N2—C151.330 (3)C15—H150.9300
C2—O41.226 (3)C16—C181.363 (5)
C2—O31.282 (3)C16—H160.9300
C2—C31.511 (3)C17—C181.373 (4)
O3—Ni1ii1.9962 (16)C17—H170.9300
N3—C201.335 (3)C18—H180.9300
N3—C191.341 (3)C19—C211.375 (4)
C3—C81.381 (3)C19—H190.9300
C3—C41.390 (3)C20—C221.386 (4)
C4—C51.381 (3)C20—H200.9300
C4—H40.9300C21—C231.372 (4)
C5—C61.380 (3)C21—H210.9300
C6—C71.390 (3)C22—C231.383 (4)
C6—H60.9300C22—H220.9300
C7—C81.387 (3)C23—H230.9300
O3i—Ni1—N294.29 (7)C3—C8—C7121.0 (2)
O3i—Ni1—O2112.73 (7)C3—C8—H8119.5
N2—Ni1—O2152.98 (7)C7—C8—H8119.5
O3i—Ni1—O1172.84 (7)N1—C9—C11123.7 (3)
N2—Ni1—O192.78 (7)N1—C9—H9118.2
O2—Ni1—O160.20 (6)C11—C9—H9118.2
O3i—Ni1—N188.82 (7)N1—C10—C12123.4 (3)
N2—Ni1—N190.11 (7)N1—C10—H10118.3
O2—Ni1—N190.48 (7)C12—C10—H10118.3
O1—Ni1—N190.02 (7)C13—C11—C9119.1 (3)
O3i—Ni1—N390.39 (7)C13—C11—H11120.5
N2—Ni1—N391.78 (7)C9—C11—H11120.5
O2—Ni1—N388.13 (7)C10—C12—C13119.4 (3)
O1—Ni1—N390.54 (7)C10—C12—H12120.3
N1—Ni1—N3178.00 (7)C13—C12—H12120.3
C1—O1—Ni188.74 (14)C11—C13—C12118.3 (3)
C9—N1—C10116.1 (2)C11—C13—H13120.9
C9—N1—Ni1124.07 (17)C12—C13—H13120.9
C10—N1—Ni1119.51 (17)N2—C14—C16123.8 (3)
O2—C1—O1120.5 (2)N2—C14—H14118.1
O2—C1—C7119.7 (2)C16—C14—H14118.1
O1—C1—C7119.7 (2)N2—C15—C17123.3 (3)
C1—O2—Ni190.54 (14)N2—C15—H15118.4
C14—N2—C15117.1 (2)C17—C15—H15118.4
C14—N2—Ni1118.52 (17)C18—C16—C14118.4 (3)
C15—N2—Ni1124.42 (17)C18—C16—H16120.8
O4—C2—O3125.9 (2)C14—C16—H16120.8
O4—C2—C3119.5 (2)C18—C17—C15118.5 (3)
O3—C2—C3114.5 (2)C18—C17—H17120.8
C2—O3—Ni1ii130.29 (15)C15—C17—H17120.8
C20—N3—C19116.3 (2)C16—C18—C17119.0 (3)
C20—N3—Ni1122.15 (17)C16—C18—H18120.5
C19—N3—Ni1121.10 (17)C17—C18—H18120.5
C8—C3—C4119.5 (2)N3—C19—C21124.0 (3)
C8—C3—C2121.0 (2)N3—C19—H19118.0
C4—C3—C2119.5 (2)C21—C19—H19118.0
C5—C4—C3119.2 (2)N3—C20—C22123.4 (3)
C5—C4—H4120.4N3—C20—H20118.3
C3—C4—H4120.4C22—C20—H20118.3
C6—C5—C4121.8 (2)C23—C21—C19119.1 (3)
C6—C5—Br1119.11 (17)C23—C21—H21120.4
C4—C5—Br1119.06 (17)C19—C21—H21120.4
C5—C6—C7118.8 (2)C23—C22—C20119.1 (3)
C5—C6—H6120.6C23—C22—H22120.5
C7—C6—H6120.6C20—C22—H22120.5
C8—C7—C6119.7 (2)C21—C23—C22118.1 (3)
C8—C7—C1120.1 (2)C21—C23—H23120.9
C6—C7—C1120.1 (2)C22—C23—H23121.0
N2—Ni1—O1—C1179.66 (14)O4—C2—C3—C42.8 (3)
O2—Ni1—O1—C10.32 (13)O3—C2—C3—C4−175.6 (2)
N1—Ni1—O1—C1−90.23 (14)C8—C3—C4—C5−0.3 (3)
N3—Ni1—O1—C187.85 (14)C2—C3—C4—C5−179.8 (2)
O3i—Ni1—N1—C9−146.9 (2)C3—C4—C5—C60.1 (4)
N2—Ni1—N1—C9118.8 (2)C3—C4—C5—Br1−179.01 (17)
O2—Ni1—N1—C9−34.2 (2)C4—C5—C6—C70.0 (4)
O1—Ni1—N1—C926.0 (2)Br1—C5—C6—C7179.19 (17)
O3i—Ni1—N1—C1026.11 (19)C5—C6—C7—C8−0.1 (3)
N2—Ni1—N1—C10−68.18 (19)C5—C6—C7—C1−178.3 (2)
O2—Ni1—N1—C10138.84 (19)O2—C1—C7—C8−0.3 (3)
O1—Ni1—N1—C10−160.96 (18)O1—C1—C7—C8−179.3 (2)
Ni1—O1—C1—O2−0.5 (2)O2—C1—C7—C6177.9 (2)
Ni1—O1—C1—C7178.45 (19)O1—C1—C7—C6−1.1 (3)
O1—C1—O2—Ni10.6 (2)C4—C3—C8—C70.2 (3)
C7—C1—O2—Ni1−178.44 (19)C2—C3—C8—C7179.8 (2)
O3i—Ni1—O2—C1178.35 (13)C6—C7—C8—C30.0 (3)
N2—Ni1—O2—C1−1.8 (2)C1—C7—C8—C3178.2 (2)
O1—Ni1—O2—C1−0.32 (13)C10—N1—C9—C11−2.0 (4)
N1—Ni1—O2—C189.43 (14)Ni1—N1—C9—C11171.2 (2)
N3—Ni1—O2—C1−92.01 (14)C9—N1—C10—C121.8 (4)
O3i—Ni1—N2—C14−174.3 (2)Ni1—N1—C10—C12−171.7 (2)
O2—Ni1—N2—C145.8 (3)N1—C9—C11—C130.0 (4)
O1—Ni1—N2—C144.6 (2)N1—C10—C12—C130.4 (4)
N1—Ni1—N2—C14−85.5 (2)C9—C11—C13—C122.3 (4)
N3—Ni1—N2—C1495.2 (2)C10—C12—C13—C11−2.5 (4)
O3i—Ni1—N2—C156.8 (2)C15—N2—C14—C160.3 (5)
O2—Ni1—N2—C15−173.11 (19)Ni1—N2—C14—C16−178.7 (3)
O1—Ni1—N2—C15−174.4 (2)C14—N2—C15—C170.9 (4)
N1—Ni1—N2—C1595.6 (2)Ni1—N2—C15—C17179.8 (2)
N3—Ni1—N2—C15−83.7 (2)N2—C14—C16—C18−1.0 (6)
O4—C2—O3—Ni1ii−0.5 (4)N2—C15—C17—C18−1.3 (5)
C3—C2—O3—Ni1ii177.90 (14)C14—C16—C18—C170.5 (5)
O3i—Ni1—N3—C20175.21 (19)C15—C17—C18—C160.6 (5)
N2—Ni1—N3—C20−90.49 (19)C20—N3—C19—C21−1.2 (4)
O2—Ni1—N3—C2062.47 (19)Ni1—N3—C19—C21171.5 (2)
O1—Ni1—N3—C202.31 (19)C19—N3—C20—C221.4 (4)
O3i—Ni1—N3—C192.84 (19)Ni1—N3—C20—C22−171.3 (2)
N2—Ni1—N3—C1997.14 (19)N3—C19—C21—C23−0.1 (4)
O2—Ni1—N3—C19−109.90 (19)N3—C20—C22—C23−0.1 (4)
O1—Ni1—N3—C19−170.06 (18)C19—C21—C23—C221.4 (4)
O4—C2—C3—C8−176.7 (2)C20—C22—C23—C21−1.3 (4)
O3—C2—C3—C84.8 (3)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2127).

References

  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin,USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Therrien, B., Vieille-Petit, L. & Suss-Fink, G. (2005). J. Mol. Struct 749, 183–186.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography