PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m968.
Published online 2008 June 28. doi:  10.1107/S1600536808018989
PMCID: PMC2961690

Hexakis(1H-imidazole-κN 3)nickel(II) bis­(2,4-dibromo-6-formyl­phenolate) N,N-dimethyl­formamide disolvate

Abstract

In the cation of the title compound, [Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NO, the NiII ion lies on an inversion center and is coordinated in a slightly distorted octa­hedral environment by six N atoms from six imidazole ligands. In the crystal structure, cations, anions and solvent mol­ecules are linked by inter­molecular N—H(...)O hydrogen bonds into one-dimensional chains along [010]. In addition, the crystal structure is stabilized by weak C—H(...)O and C—H(...)N hydrogen bonds.

Related literature

For related literature, see: Gelman et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m968-scheme1.jpg

Experimental

Crystal data

  • [Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NO
  • M r = 1171.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m968-efi1.jpg
  • a = 14.7271 (13) Å
  • b = 9.0221 (8) Å
  • c = 18.1143 (16) Å
  • β = 100.408 (2)°
  • V = 2367.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.84 mm−1
  • T = 292 (2) K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.308, T max = 0.392 (expected range = 0.365–0.464)
  • 13477 measured reflections
  • 5147 independent reflections
  • 3646 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.113
  • S = 1.01
  • 5147 reflections
  • 288 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018989/lh2618sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018989/lh2618Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Hubei Province (No. Q20082601) and the Foundation of Xiaogan University (Z2008012).

supplementary crystallographic information

Comment

Due to the weak coordination strength of dibromosalicylaldehydenate anions with transition metals, the dibromosalicylaldehydenate usually acts as the counterbalance of the charge. Herein, we report the crystal structure of such a compound, [Ni(Im)6](DBSH)2 2DMF, (I), (Im = imidazole; H2DBSH =3,5-dibromosalicylaldehyde; DMF =N,N-dimethylformamide). The molecular structure of (I) is shown in Fig.1. The NiII ion lying on an inversion center has a distorted octahedral geometry being coordinated by six N atoms from six imidazole ligands. Atoms N3, N3i, N5 & N5icomprise the equatorial plane, whereas the other two N atoms (N1 & N1i) occupy the axial positions (symmetry code as is Table 1). The Ni—N distances (Table 1), and the average Ni—N bond length of 2.12 Å, are longer than the Ni—N distances in [Ni(nap)(bip)](Cl)(nap = 1-naphthyl; bip =2,2'-bipyridine-N,N'; Ni—N 1.919 (8) Å) (Gelman et al., 2002). As shown in Fig.2, an organic cation layer is linked to an inorganic anionic layer through a series of N—H···O, C—H···O and C—H···N hydrogen bonds (Table 2), and adjacent 3,5-dibromosalicylaldehydenate anions are antiparallel. The hydrogen bonds stabilize the crystal structure.

Experimental

The title compound was prepared by adding Ni(Ac)2.2H2O (0.110 g, 0.5 mmol) to a solution of H2(DBSH) 0.122 mg (0.5 mmol) in methanol (20 mL) and DMF (20 ml). After stirring the mixture for 2 h, the solution was filtered and kept for several days at ambient temperature to evaporate. Brown block-like crystals were obtained.

Refinement

All H atoms were placed in geometrically idealized positions and refined in the riding- model approximation, with N-H = 0.86 Å and C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl)

Figures

Fig. 1.
The molecular structure of (I), showing displacement ellipsoids at the 30% probability level [symmetry code: (i) -x+1, -y, -z]. H atoms have been omitted.
Fig. 2.
Part of the crystal structure showing hydrogen bonds as dashed lines.

Crystal data

[Ni(C3H4N2)6](C7H3Br2O2)2·2C3H7NOF000 = 1172
Mr = 1171.22Dx = 1.643 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3743 reflections
a = 14.7271 (13) Åθ = 2.3–25.2º
b = 9.0221 (8) ŵ = 3.84 mm1
c = 18.1143 (16) ÅT = 292 (2) K
β = 100.408 (2)ºBlock, brown
V = 2367.2 (4) Å30.25 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer5147 independent reflections
Radiation source: fine-focus sealed tube3646 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 292(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 1.4º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −18→10
Tmin = 0.309, Tmax = 0.392k = −11→10
13477 measured reflectionsl = −23→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0625P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5147 reflectionsΔρmax = 0.57 e Å3
288 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.00000.00000.03274 (14)
Br10.24272 (2)0.17200 (5)0.27116 (2)0.06303 (15)
Br2−0.11882 (4)0.03677 (8)0.12533 (3)0.1107 (2)
N10.52342 (17)−0.0719 (3)0.11435 (13)0.0402 (6)
N20.5794 (2)−0.0782 (4)0.23540 (15)0.0586 (8)
H2A0.6097−0.05240.27860.070*
N30.56038 (16)0.2073 (3)0.03727 (13)0.0393 (6)
N40.6664 (2)0.3744 (3)0.07883 (15)0.0524 (7)
H4A0.71920.41750.08900.063*
N50.36975 (16)0.0871 (3)0.01215 (13)0.0379 (6)
N60.25325 (17)0.2412 (3)−0.00608 (16)0.0487 (7)
H6A0.21420.3053−0.02790.058*
C16−0.0057 (2)−0.0903 (4)0.41722 (18)0.0451 (8)
H160.0403−0.09230.45980.054*
N80.2044 (3)0.7094 (4)0.1345 (2)0.0744 (9)
O1−0.0693 (3)−0.1323 (4)0.42179 (16)0.0882 (9)
O20.17355 (14)0.0277 (2)0.40408 (11)0.0457 (5)
O30.3141 (2)0.5358 (4)0.13585 (18)0.0927 (10)
C10.4906 (2)−0.1939 (4)0.1457 (2)0.0545 (9)
H10.4506−0.26350.11950.065*
C20.5247 (3)−0.1991 (5)0.2203 (2)0.0647 (10)
H20.5130−0.27100.25420.078*
C30.5773 (2)−0.0056 (4)0.17004 (18)0.0498 (8)
H30.61000.08090.16510.060*
C40.6477 (2)0.2437 (4)0.04387 (17)0.0465 (8)
H40.69160.18580.02640.056*
C50.5854 (3)0.4248 (4)0.0949 (2)0.0609 (10)
H50.57610.51290.11920.073*
C60.5208 (2)0.3220 (4)0.06879 (19)0.0517 (8)
H60.45860.32850.07190.062*
C70.3228 (2)0.1833 (3)−0.03379 (18)0.0434 (7)
H70.33670.2082−0.08030.052*
C80.2548 (2)0.1816 (4)0.0622 (2)0.0590 (9)
H80.21490.20210.09520.071*
C90.3262 (2)0.0860 (4)0.07290 (19)0.0522 (8)
H90.34350.02770.11540.063*
C100.1241 (2)0.0919 (4)0.27542 (18)0.0461 (7)
C110.1103 (2)0.0322 (3)0.34538 (18)0.0400 (7)
C120.0195 (2)−0.0232 (3)0.34397 (18)0.0455 (8)
C13−0.0480 (2)−0.0201 (4)0.2791 (2)0.0546 (9)
H13−0.1067−0.05730.28010.066*
C14−0.0282 (3)0.0373 (4)0.2142 (2)0.0584 (9)
C150.0579 (2)0.0958 (4)0.21212 (18)0.0565 (9)
H150.07070.13740.16810.068*
C190.2451 (3)0.6031 (5)0.1056 (2)0.0727 (11)
H190.21950.57490.05690.087*
C170.2366 (4)0.7550 (7)0.2115 (3)0.1150 (19)
H17A0.19150.72830.24140.173*
H17B0.24550.86040.21340.173*
H17C0.29400.70650.23080.173*
C180.1235 (4)0.7834 (6)0.0939 (3)0.1070 (17)
H18A0.11260.75160.04250.161*
H18B0.13320.88860.09610.161*
H18C0.07100.75900.11620.161*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0284 (3)0.0338 (3)0.0357 (3)0.0004 (2)0.0047 (2)−0.0001 (2)
Br10.0482 (2)0.0825 (3)0.0575 (2)−0.01576 (18)0.00701 (17)0.00634 (18)
Br20.0836 (4)0.1536 (5)0.0743 (3)−0.0336 (3)−0.0404 (3)0.0199 (3)
N10.0382 (14)0.0433 (15)0.0396 (14)0.0043 (12)0.0087 (11)0.0020 (12)
N20.067 (2)0.071 (2)0.0378 (15)0.0125 (17)0.0083 (14)0.0040 (15)
N30.0374 (14)0.0380 (14)0.0418 (14)−0.0036 (11)0.0047 (11)−0.0010 (11)
N40.0472 (17)0.0496 (17)0.0562 (17)−0.0136 (13)−0.0017 (13)−0.0045 (14)
N50.0311 (13)0.0386 (14)0.0442 (14)0.0012 (10)0.0070 (11)−0.0019 (11)
N60.0337 (14)0.0465 (16)0.0626 (17)0.0100 (12)0.0001 (12)−0.0058 (14)
C160.0262 (15)0.059 (2)0.0451 (18)−0.0011 (15)−0.0081 (13)−0.0160 (16)
N80.088 (3)0.061 (2)0.069 (2)−0.0127 (19)0.0011 (19)−0.0037 (18)
O10.111 (3)0.091 (2)0.0664 (18)−0.015 (2)0.0265 (18)0.0002 (16)
O20.0361 (12)0.0528 (14)0.0436 (12)0.0005 (9)−0.0051 (10)−0.0011 (10)
O30.099 (3)0.093 (2)0.079 (2)0.002 (2)−0.0024 (19)0.0033 (18)
C10.050 (2)0.056 (2)0.058 (2)0.0017 (16)0.0107 (16)0.0111 (17)
C20.070 (3)0.075 (3)0.053 (2)0.004 (2)0.0205 (19)0.019 (2)
C30.054 (2)0.055 (2)0.0405 (17)0.0034 (16)0.0089 (15)−0.0004 (16)
C40.0444 (19)0.047 (2)0.0474 (18)−0.0039 (15)0.0072 (14)−0.0012 (16)
C50.061 (2)0.042 (2)0.077 (3)−0.0013 (17)0.005 (2)−0.0146 (19)
C60.0444 (19)0.0440 (19)0.066 (2)0.0017 (15)0.0070 (16)−0.0112 (16)
C70.0353 (16)0.0476 (19)0.0443 (17)0.0019 (14)−0.0006 (13)−0.0022 (15)
C80.050 (2)0.067 (2)0.066 (2)0.0175 (18)0.0270 (18)0.0084 (19)
C90.050 (2)0.055 (2)0.055 (2)0.0130 (16)0.0214 (16)0.0123 (16)
C100.0384 (17)0.0481 (19)0.0507 (18)−0.0033 (14)0.0051 (14)0.0018 (15)
C110.0319 (16)0.0354 (17)0.0498 (18)0.0041 (12)−0.0002 (13)−0.0057 (13)
C120.0368 (17)0.048 (2)0.0504 (19)0.0013 (14)0.0029 (14)−0.0005 (15)
C130.0382 (19)0.057 (2)0.064 (2)−0.0085 (15)−0.0036 (16)−0.0035 (17)
C140.052 (2)0.065 (2)0.050 (2)−0.0074 (17)−0.0156 (16)0.0011 (17)
C150.059 (2)0.061 (2)0.0443 (18)−0.0076 (18)−0.0037 (16)0.0047 (17)
C190.088 (3)0.068 (3)0.058 (2)−0.020 (2)0.004 (2)0.002 (2)
C170.147 (5)0.104 (4)0.090 (4)−0.009 (4)0.010 (3)−0.022 (3)
C180.108 (4)0.073 (3)0.126 (4)0.000 (3)−0.015 (3)0.004 (3)

Geometric parameters (Å, °)

Ni1—N52.121 (2)O2—C111.282 (4)
Ni1—N5i2.121 (2)O3—C191.224 (5)
Ni1—N3i2.128 (2)C1—C21.355 (5)
Ni1—N32.128 (2)C1—H10.9300
Ni1—N1i2.138 (2)C2—H20.9300
Ni1—N12.138 (2)C3—H30.9300
Br1—C101.905 (3)C4—H40.9300
Br1—H83.1509C5—C61.351 (5)
Br2—C141.896 (3)C5—H50.9300
N1—C31.309 (4)C6—H60.9300
N1—C11.366 (4)C7—H70.9300
N2—C31.348 (4)C8—C91.346 (5)
N2—C21.354 (5)C8—H80.9300
N2—H2A0.8600C9—H90.9300
N3—C41.312 (4)C10—C151.365 (4)
N3—C61.362 (4)C10—C111.425 (4)
N4—C41.343 (4)C11—C121.424 (4)
N4—C51.357 (4)C12—C131.396 (5)
N4—H4A0.8600C13—C141.364 (5)
N5—C71.310 (4)C13—H130.9300
N5—C91.370 (4)C14—C151.381 (5)
N6—C71.327 (4)C15—H150.9300
N6—C81.345 (4)C19—H190.9300
N6—H6A0.8600C17—H17A0.9600
C16—O11.028 (4)C17—H17B0.9600
C16—C121.563 (5)C17—H17C0.9600
C16—H160.9300C18—H18A0.9600
N8—C191.290 (6)C18—H18B0.9600
N8—C181.446 (6)C18—H18C0.9600
N8—C171.450 (6)
N5—Ni1—N5i180N3—C4—H4124.0
N5—Ni1—N3i91.41 (9)N4—C4—H4124.0
N5i—Ni1—N3i88.59 (9)C6—C5—N4106.5 (3)
N5—Ni1—N388.59 (9)C6—C5—H5126.7
N5i—Ni1—N391.41 (9)N4—C5—H5126.7
N3i—Ni1—N3180C5—C6—N3110.0 (3)
N5—Ni1—N1i89.86 (9)C5—C6—H6125.0
N5i—Ni1—N1i90.14 (9)N3—C6—H6125.0
N3i—Ni1—N1i88.52 (9)N5—C7—N6112.0 (3)
N3—Ni1—N1i91.48 (9)N5—C7—H7124.0
N5—Ni1—N190.14 (9)N6—C7—H7124.0
N5i—Ni1—N189.86 (9)N6—C8—C9105.8 (3)
N3i—Ni1—N191.48 (9)N6—C8—H8127.1
N3—Ni1—N188.52 (9)C9—C8—H8127.1
N1i—Ni1—N1180C8—C9—N5110.3 (3)
C10—Br1—H896.9C8—C9—H9124.9
C3—N1—C1105.0 (3)N5—C9—H9124.9
C3—N1—Ni1125.3 (2)C15—C10—C11124.2 (3)
C1—N1—Ni1129.8 (2)C15—C10—Br1118.5 (3)
C3—N2—C2107.2 (3)C11—C10—Br1117.3 (2)
C3—N2—H2A126.4O2—C11—C12122.9 (3)
C2—N2—H2A126.4O2—C11—C10123.4 (3)
C4—N3—C6105.0 (3)C12—C11—C10113.7 (3)
C4—N3—Ni1126.5 (2)C13—C12—C11122.1 (3)
C6—N3—Ni1127.9 (2)C13—C12—C16118.7 (3)
C4—N4—C5106.5 (3)C11—C12—C16119.2 (3)
C4—N4—H4A126.8C14—C13—C12120.2 (3)
C5—N4—H4A126.8C14—C13—H13119.9
C7—N5—C9104.2 (3)C12—C13—H13119.9
C7—N5—Ni1124.2 (2)C13—C14—C15120.6 (3)
C9—N5—Ni1130.1 (2)C13—C14—Br2120.2 (3)
C7—N6—C8107.7 (3)C15—C14—Br2119.1 (3)
C7—N6—H6A126.1C10—C15—C14119.2 (3)
C8—N6—H6A126.1C10—C15—H15120.4
O1—C16—C12124.8 (3)C14—C15—H15120.4
O1—C16—H16117.6O3—C19—N8126.5 (4)
C12—C16—H16117.6O3—C19—H19116.7
C19—N8—C18122.5 (4)N8—C19—H19116.7
C19—N8—C17120.4 (4)N8—C17—H17A109.5
C18—N8—C17117.0 (4)N8—C17—H17B109.5
C2—C1—N1110.3 (3)H17A—C17—H17B109.5
C2—C1—H1124.8N8—C17—H17C109.5
N1—C1—H1124.8H17A—C17—H17C109.5
N2—C2—C1105.9 (3)H17B—C17—H17C109.5
N2—C2—H2127.1N8—C18—H18A109.5
C1—C2—H2127.1N8—C18—H18B109.5
N1—C3—N2111.7 (3)H18A—C18—H18B109.5
N1—C3—H3124.2N8—C18—H18C109.5
N2—C3—H3124.2H18A—C18—H18C109.5
N3—C4—N4112.1 (3)H18B—C18—H18C109.5
N5—Ni1—N1—C3−102.9 (3)C4—N4—C5—C6−0.1 (4)
N5i—Ni1—N1—C377.1 (3)N4—C5—C6—N30.6 (4)
N3i—Ni1—N1—C3165.7 (3)C4—N3—C6—C5−0.9 (4)
N3—Ni1—N1—C3−14.3 (3)Ni1—N3—C6—C5170.9 (2)
N5—Ni1—N1—C179.5 (3)C9—N5—C7—N6−0.4 (3)
N5i—Ni1—N1—C1−100.5 (3)Ni1—N5—C7—N6−167.72 (19)
N3i—Ni1—N1—C1−11.9 (3)C8—N6—C7—N50.8 (4)
N3—Ni1—N1—C1168.1 (3)C7—N6—C8—C9−0.9 (4)
N5—Ni1—N3—C4−178.5 (3)N6—C8—C9—N50.7 (4)
N5i—Ni1—N3—C41.5 (3)C7—N5—C9—C8−0.2 (4)
N1i—Ni1—N3—C4−88.6 (3)Ni1—N5—C9—C8166.1 (2)
N1—Ni1—N3—C491.4 (3)H8—Br1—C10—C15−12.2
N5—Ni1—N3—C611.4 (3)H8—Br1—C10—C11168.2
N5i—Ni1—N3—C6−168.6 (3)C15—C10—C11—O2179.1 (3)
N1i—Ni1—N3—C6101.2 (3)Br1—C10—C11—O2−1.3 (4)
N1—Ni1—N3—C6−78.8 (3)C15—C10—C11—C12−0.5 (5)
N3i—Ni1—N5—C7−105.8 (2)Br1—C10—C11—C12179.1 (2)
N3—Ni1—N5—C774.2 (2)O2—C11—C12—C13−178.7 (3)
N1i—Ni1—N5—C7−17.3 (2)C10—C11—C12—C130.9 (4)
N1—Ni1—N5—C7162.7 (2)O2—C11—C12—C161.2 (4)
N3i—Ni1—N5—C990.3 (3)C10—C11—C12—C16−179.3 (3)
N3—Ni1—N5—C9−89.7 (3)O1—C16—C12—C13−0.6 (6)
N1i—Ni1—N5—C9178.8 (3)O1—C16—C12—C11179.6 (4)
N1—Ni1—N5—C9−1.2 (3)C11—C12—C13—C140.0 (5)
C3—N1—C1—C20.5 (4)C16—C12—C13—C14−179.8 (3)
Ni1—N1—C1—C2178.4 (2)C12—C13—C14—C15−1.4 (6)
C3—N2—C2—C1−0.6 (4)C12—C13—C14—Br2178.3 (3)
N1—C1—C2—N20.1 (4)C11—C10—C15—C14−0.8 (5)
C1—N1—C3—N2−0.9 (4)Br1—C10—C15—C14179.6 (3)
Ni1—N1—C3—N2−179.0 (2)C13—C14—C15—C101.8 (6)
C2—N2—C3—N11.0 (4)Br2—C14—C15—C10−177.9 (3)
C6—N3—C4—N40.9 (4)C18—N8—C19—O3179.4 (5)
Ni1—N3—C4—N4−171.08 (19)C17—N8—C19—O3−3.5 (7)
C5—N4—C4—N3−0.5 (4)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O3ii0.861.922.764 (5)169
N4—H4A···O2iii0.861.852.703 (3)170
N6—H6A···O2iv0.861.972.772 (3)155
C7—H7···N1i0.932.573.076 (4)115
C8—H8···O1v0.932.593.264 (5)130
C3—H3···N30.932.573.053 (4)113

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) x, −y+1/2, z−1/2; (i) −x+1, −y, −z; (v) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2618).

References

  • Bruker (2001). SAINT, SMART and SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Gelman, D., Dechert, S., Schumann, H. & Blum, J. (2002). Inorg. Chim. Acta, 334, 149–158.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography