PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1295–o1296.
Published online 2008 June 19. doi:  10.1107/S1600536808018059
PMCID: PMC2961685

Cytenamide–butyric acid (1/1)

Abstract

Cytenamide forms a 1:1 solvate with butyric acid [systematic name: 5H-dibenzo[a,d]cyclo­hepta­triene-5-carboxamide–butanoic acid (1/1)], C16H13NO·C4H8O2. The title compound crystallizes with one mol­ecule of cytenamide and one of butyric acid in the asymmetric unit; these mol­ecules are linked by N—H(...)O and O—H(...)O hydrogen bonds to form an R 2 2(8) heterodimer motif. Pairs of adjacent motifs are further connected via N—H(...)O inter­actions to form a discrete centrosymmetric assembly.

Related literature

For details on experimental methods used to obtain the title solvate, see: Davis et al. (1964 [triangle]); Florence et al. (2003 [triangle]); Florence, Johnston, Fernandes et al. (2006 [triangle]). For literature on cytenamide and related mol­ecules, see: Florence, Bedford et al. (2008 [triangle]); Cyr et al. (1987 [triangle]); Fleischman et al. (2003 [triangle]); Florence, Johnston, Price et al. (2006 [triangle]); Florence, Leech et al. (2006 [triangle]); Bandoli et al. (1992 [triangle]); Harrison et al. (2006 [triangle]); Leech et al. (2007 [triangle]); Florence, Shankland et al. (2008 [triangle]). For other related literature, see: Etter (1990 [triangle]) ; Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1295-scheme1.jpg

Experimental

Crystal data

  • C16H13NO·C4H8O2
  • M r = 323.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1295-efi3.jpg
  • a = 5.9351 (2) Å
  • b = 16.3595 (5) Å
  • c = 17.6738 (4) Å
  • β = 98.046 (2)°
  • V = 1699.15 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 160 K
  • 0.35 × 0.15 × 0.12 mm

Data collection

  • Oxford Diffraction Gemini diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.91, T max = 0.99
  • 18979 measured reflections
  • 4069 independent reflections
  • 2928 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.088
  • S = 0.95
  • 4069 reflections
  • 226 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED and SORTAV (Blessing, 1997 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018059/gk2147sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018059/gk2147Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http://www.cposs.org.uk).

supplementary crystallographic information

Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr et al., 1987). CYT-butyric acid solvate was produced during an automated parallel crystallization study (Florence, Johnston, Fernandes et al., 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity in CBZ (Florence, Johnston, Price et al., 2006; Florence, Leech et al., 2006) and its closely related analogues, CYT (Florence, Bedford et al., 2008), 10,11-dihydrocarbamazepine (Bandoli et al., 1992; Harrison et al., 2006; Leech et al., 2007) and cyheptamide (Florence, Shankland et al., 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated butyric acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The compound crystallizes in the monoclinic space group P21/n with one CYT and one solvent molecule in the asymmetric unit. The molecules adopt a hydrogen-bonded arrangement similar to that observed in CBZ-butyric acid solvate (1/1) (Fleischman et al., 2003) whereby the CYT and butyric acid molecules are connected via N—H···O and O—H···O hydrogen bonds to form an R22(8) dimer motif (Etter, 1990). Adjacent dimers are linked via a third contact (N1—H1···O2; Fig 2) to form an R42(8) centrosymmetric double motif arrangement. The O1···O3 distance of 2.566 (1) Å lies within the expected range for strong hydrogen bonds (2.5 - 3.2 Å; Desiraju and Steiner, 1999).

CYT-butyric acid solvate structure reported here is essentially isostructural with both CBZ-formic acid and CBZ-acetic acid solvates (Fleischman et al., 2003).

Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis et al., 1964). A single-crystal sample of cytenamide-butyric acid was grown form a saturated butyric acid solution by isothermal solvent evaporation at 278 K.

Refinement

H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The positions of H-atoms involved in H-bonding were refined subject to distance restraints.

Figures

Fig. 1.
The molecular structure of CYT–butyric acid (1/1), showing 50% probablility displacement ellipsoids.
Fig. 2.
The hydrogen bonded R22(8) motifs of CYT-butyric acid joined in a centrosymmetric arrangement via an R42(8) motif. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H13NO·C4H8O2F000 = 688
Mr = 323.39Dx = 1.264 Mg m3
Monoclinic, P21/nMelting point: 216.2 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 5.9351 (2) ÅCell parameters from 6486 reflections
b = 16.3595 (5) Åθ = 3–29º
c = 17.6738 (4) ŵ = 0.09 mm1
β = 98.046 (2)ºT = 160 K
V = 1699.15 (9) Å3Block, colourless
Z = 40.35 × 0.15 × 0.12 mm

Data collection

Oxford Diffraction Gemini diffractometer4069 independent reflections
Radiation source: Enhance (Mo) X-ray Source2928 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
Detector resolution: 15.9745 pixels mm-1θmax = 28.7º
T = 160 Kθmin = 2.6º
ω scansh = −7→7
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007)k = 0→21
Tmin = 0.91, Tmax = 0.99l = 0→23
18979 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: geom+difmap
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088  Method = Modified Sheldrick w = 1/[σ2(F2) + (0.03P)2 + 0.5P], where P = [max(Fo2,0) + 2Fc2]/3
S = 0.95(Δ/σ)max = 0.001
4069 reflectionsΔρmax = 0.38 e Å3
226 parametersΔρmin = −0.27 e Å3
3 restraintsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3604 (2)0.32253 (7)0.41898 (7)0.0261
C20.1718 (2)0.36489 (8)0.38294 (7)0.0323
C30.1256 (2)0.36854 (9)0.30423 (8)0.0391
C40.2687 (2)0.33058 (9)0.25996 (7)0.0392
C50.4591 (2)0.28990 (8)0.29445 (7)0.0344
C60.5061 (2)0.28359 (7)0.37441 (7)0.0279
C70.6996 (2)0.23388 (8)0.40716 (7)0.0304
C80.7115 (2)0.18488 (8)0.46816 (7)0.0301
C90.5383 (2)0.17092 (8)0.51782 (6)0.0269
C100.5251 (2)0.09343 (8)0.55037 (7)0.0341
C110.3603 (2)0.07491 (9)0.59538 (8)0.0398
C120.2069 (2)0.13407 (9)0.61005 (8)0.0389
C130.2205 (2)0.21186 (8)0.58012 (7)0.0321
C140.3844 (2)0.23123 (7)0.53434 (6)0.0258
C150.4034 (2)0.31760 (7)0.50530 (6)0.0257
C160.6242 (2)0.35710 (7)0.54306 (7)0.0276
C170.3158 (3)0.57421 (11)0.16558 (9)0.0568
C180.5184 (3)0.60108 (10)0.22080 (8)0.0455
C190.5957 (2)0.53835 (9)0.28103 (8)0.0371
C200.8040 (2)0.56040 (8)0.33497 (7)0.0295
O10.70946 (16)0.33413 (6)0.60746 (5)0.0369
O20.84351 (15)0.53413 (6)0.39986 (5)0.0346
N10.7091 (2)0.41860 (7)0.50777 (6)0.0335
O30.94149 (17)0.61035 (6)0.30567 (5)0.0435
H1510.28280.34880.52490.0293*
H210.07130.39160.41450.0377*
H810.84560.14980.47860.0333*
H710.82930.23320.37900.0372*
H1910.47660.52660.31150.0486*
H1920.62950.48890.25640.0473*
H1310.11550.25360.59140.0383*
H1010.62910.05260.53890.0392*
H410.23380.33170.20570.0465*
H1210.09350.12220.64190.0464*
H510.56370.26360.26410.0395*
H1110.35070.02140.61500.0470*
H1820.47700.65150.24590.0609*
H1810.65030.61200.19460.0611*
H31−0.00990.39710.27940.0463*
H1720.27120.61620.12790.0868*
H1730.18580.56250.19330.0867*
H1710.35040.52400.14020.0875*
H120.834 (2)0.4432 (9)0.5320 (8)0.0446*
H110.652 (2)0.4352 (9)0.4630 (8)0.0433*
H3111.058 (3)0.6243 (11)0.3395 (9)0.0689*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0283 (6)0.0234 (6)0.0265 (6)−0.0013 (5)0.0032 (5)−0.0008 (5)
C20.0315 (7)0.0305 (7)0.0348 (7)0.0030 (5)0.0040 (5)0.0027 (5)
C30.0366 (8)0.0396 (8)0.0383 (7)0.0032 (6)−0.0041 (6)0.0075 (6)
C40.0476 (8)0.0422 (8)0.0259 (6)−0.0032 (7)−0.0010 (6)0.0030 (6)
C50.0414 (8)0.0345 (8)0.0279 (6)−0.0020 (6)0.0075 (6)−0.0025 (5)
C60.0297 (6)0.0258 (7)0.0279 (6)−0.0019 (5)0.0031 (5)−0.0021 (5)
C70.0287 (6)0.0318 (7)0.0315 (6)0.0018 (5)0.0065 (5)−0.0068 (5)
C80.0270 (6)0.0295 (7)0.0321 (6)0.0056 (5)−0.0016 (5)−0.0067 (5)
C90.0273 (6)0.0284 (7)0.0227 (6)−0.0004 (5)−0.0051 (5)−0.0026 (5)
C100.0388 (7)0.0291 (7)0.0313 (6)0.0021 (6)−0.0057 (6)−0.0015 (5)
C110.0507 (9)0.0310 (8)0.0347 (7)−0.0078 (6)−0.0051 (6)0.0073 (6)
C120.0384 (8)0.0448 (9)0.0327 (7)−0.0111 (7)0.0021 (6)0.0063 (6)
C130.0298 (7)0.0379 (8)0.0275 (6)−0.0022 (6)0.0010 (5)−0.0008 (5)
C140.0264 (6)0.0277 (7)0.0215 (5)−0.0016 (5)−0.0027 (5)−0.0024 (5)
C150.0270 (6)0.0256 (7)0.0252 (6)0.0034 (5)0.0055 (5)−0.0028 (5)
C160.0334 (7)0.0245 (6)0.0252 (6)0.0009 (5)0.0059 (5)−0.0041 (5)
C170.0518 (10)0.0666 (12)0.0470 (9)0.0033 (8)−0.0109 (7)−0.0040 (8)
C180.0467 (9)0.0430 (9)0.0435 (8)−0.0033 (7)−0.0052 (7)0.0042 (7)
C190.0398 (8)0.0347 (8)0.0361 (7)−0.0062 (6)0.0026 (6)−0.0017 (6)
C200.0366 (7)0.0246 (7)0.0279 (6)−0.0004 (5)0.0066 (5)−0.0014 (5)
O20.0421 (5)0.0326 (5)0.0290 (5)−0.0029 (4)0.0045 (4)0.0035 (4)
N10.0402 (7)0.0304 (6)0.0291 (5)−0.0056 (5)0.0024 (5)0.0018 (5)
O30.0457 (6)0.0529 (7)0.0297 (5)−0.0205 (5)−0.0027 (4)0.0077 (4)
O10.0441 (5)0.0373 (5)0.0271 (4)−0.0124 (4)−0.0027 (4)0.0021 (4)

Geometric parameters (Å, °)

C1—C21.3924 (17)C12—H1210.956
C1—C61.4018 (17)C13—C141.3860 (17)
C1—C151.5133 (15)C13—H1310.965
C2—C31.3811 (18)C14—C151.5129 (17)
C2—H210.975C15—C161.5282 (17)
C3—C41.380 (2)C15—H1510.981
C3—H310.980C16—N11.3204 (16)
C4—C51.378 (2)C16—O11.2376 (14)
C4—H410.952C17—C181.504 (2)
C5—C61.4054 (17)C17—H1720.968
C5—H510.976C17—H1730.988
C6—C71.4591 (17)C17—H1710.971
C7—C81.3373 (18)C18—C191.5034 (19)
C7—H710.974C18—H1820.984
C8—C91.4601 (18)C18—H1810.980
C8—H810.977C19—C201.4956 (18)
C9—C101.3988 (18)C19—H1910.967
C9—C141.4026 (17)C19—H1920.954
C10—C111.3778 (19)C20—O21.2165 (14)
C10—H1010.950C20—O31.3114 (15)
C11—C121.378 (2)N1—H120.899 (14)
C11—H1110.946N1—H110.860 (14)
C12—C131.3848 (19)O3—H3110.880 (14)
C2—C1—C6119.25 (11)C14—C13—H131119.0
C2—C1—C15119.95 (11)C9—C14—C13119.42 (12)
C6—C1—C15120.79 (10)C9—C14—C15120.31 (11)
C1—C2—C3121.06 (12)C13—C14—C15120.22 (11)
C1—C2—H21118.6C1—C15—C14112.44 (10)
C3—C2—H21120.4C1—C15—C16115.54 (10)
C2—C3—C4120.03 (13)C14—C15—C16110.29 (10)
C2—C3—H31120.5C1—C15—H151107.5
C4—C3—H31119.5C14—C15—H151105.8
C3—C4—C5119.87 (12)C16—C15—H151104.4
C3—C4—H41119.9C15—C16—N1118.47 (11)
C5—C4—H41120.2C15—C16—O1119.24 (11)
C4—C5—C6121.01 (12)N1—C16—O1122.14 (12)
C4—C5—H51121.0C18—C17—H172110.8
C6—C5—H51118.0C18—C17—H173110.1
C5—C6—C1118.72 (11)H172—C17—H173108.7
C5—C6—C7118.30 (11)C18—C17—H171110.2
C1—C6—C7122.92 (11)H172—C17—H171109.7
C6—C7—C8127.14 (12)H173—C17—H171107.2
C6—C7—H71116.0C17—C18—C19113.39 (13)
C8—C7—H71116.7C17—C18—H182108.1
C7—C8—C9128.04 (12)C19—C18—H182108.9
C7—C8—H81117.0C17—C18—H181111.4
C9—C8—H81114.7C19—C18—H181105.9
C8—C9—C10118.27 (11)H182—C18—H181109.0
C8—C9—C14123.29 (11)C18—C19—C20115.46 (11)
C10—C9—C14118.45 (11)C18—C19—H191110.9
C9—C10—C11121.46 (13)C20—C19—H191107.3
C9—C10—H101118.2C18—C19—H192108.6
C11—C10—H101120.2C20—C19—H192106.7
C10—C11—C12119.67 (13)H191—C19—H192107.6
C10—C11—H111120.0C19—C20—O2123.28 (12)
C12—C11—H111120.3C19—C20—O3113.77 (11)
C11—C12—C13119.87 (13)O2—C20—O3122.95 (12)
C11—C12—H121120.4C16—N1—H12117.5 (10)
C13—C12—H121119.7C16—N1—H11123.2 (10)
C12—C13—C14121.09 (13)H12—N1—H11119.3 (14)
C12—C13—H131119.9C20—O3—H311111.5 (12)
C6—C1—C2—C30.48 (19)C14—C9—C10—C112.43 (18)
C15—C1—C2—C3−178.34 (12)C8—C9—C14—C13177.89 (11)
C2—C1—C6—C51.17 (17)C8—C9—C14—C15−4.73 (17)
C2—C1—C6—C7−176.25 (11)C10—C9—C14—C13−1.96 (17)
C15—C1—C6—C5180.00 (12)C10—C9—C14—C15175.42 (10)
C15—C1—C6—C72.57 (18)C9—C10—C11—C12−1.2 (2)
C2—C1—C15—C14114.81 (12)C10—C11—C12—C13−0.6 (2)
C2—C1—C15—C16−117.37 (12)C11—C12—C13—C141.0 (2)
C6—C1—C15—C14−63.99 (14)C12—C13—C14—C90.28 (18)
C6—C1—C15—C1663.83 (14)C12—C13—C14—C15−177.10 (11)
C1—C2—C3—C4−0.7 (2)C9—C14—C15—C164.61 (14)
C2—C3—C4—C5−0.8 (2)C9—C14—C15—C16−65.93 (13)
C3—C4—C5—C62.5 (2)C13—C14—C15—C1−118.03 (12)
C4—C5—C6—C1−2.67 (18)C13—C14—C15—C16111.43 (12)
C4—C5—C6—C7174.87 (12)C1—C15—C16—O1−156.56 (11)
C1—C6—C7—C836.0 (2)C1—C15—C16—N127.97 (15)
C5—C6—C7—C8−141.46 (14)C14—C15—C16—O1−27.68 (15)
C6—C7—C8—C9−1.9 (2)C14—C15—C16—N1156.85 (11)
C7—C8—C9—C10147.22 (13)C17—C18—C19—C20177.01 (13)
C7—C8—C9—C14−32.6 (2)C18—C19—C20—O2152.97 (13)
C8—C9—C10—C11−177.43 (12)C18—C19—C20—O3−27.50 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H11···O20.860 (14)2.348 (14)2.8761 (15)120.0 (10)
N1—H12···O2i0.898 (13)2.146 (13)3.0167 (15)163.2 (13)
O3—H311···O1i0.879 (17)1.698 (17)2.5658 (13)168.8 (16)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2147).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr.22, 177–183.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem.70, 836–840. [PubMed]
  • Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem.7, 88–94. [PubMed]
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des.3, 909–919.
  • Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [PubMed]
  • Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). CrystEngComm. doi:10.1039/b719717a.
  • Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst.39, 922–924.
  • Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci.95, 1918–1930. [PubMed]
  • Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
  • Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). CrystEngComm, 10, 26–28.
  • Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, o240–o242. [PubMed]
  • Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, o675–o677.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography