PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1356–o1357.
Published online 2008 June 28. doi:  10.1107/S1600536808018850
PMCID: PMC2961684

(E)-1-(3-Bromo­phen­yl)-3-(4-ethoxy­phen­yl)prop-2-en-1-one

Abstract

The title compound, C17H15BrO2, adopts an E configuration. The dihedral angle between the two benzene rings is 10.09 (11)°. The enone plane makes dihedral angles of 12.05 (11) and 9.87 (11)°, respectively, with the bromo­phenyl and ethoxy­phenyl rings. The eth­oxy group is nearly coplanar with the attached benzene ring. In the crystal structure, the mol­ecules are linked by C—H(...)O hydrogen bonds, forming a zigzag ribbon-like structure along the b-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see: Patil, Fun et al. (2007 [triangle]); Patil, Ng et al. (2007 [triangle]); Sathiya Moorthi et al. (2005a [triangle],b [triangle]). For background to chalcones, see: Chopra et al. (2007 [triangle]); DiCesare et al. (2000 [triangle]); Gu et al. (2008a [triangle],b [triangle]); Jiang et al. (1994 [triangle]); Lokaj et al. (2001 [triangle]); Low et al. (2002 [triangle]); Nel et al. (1998 [triangle]); Patil & Dharmaprakash (2007 [triangle]); Patil et al. (2006 [triangle]); Schmalle et al. (1990 [triangle]); Wang et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1356-scheme1.jpg

Experimental

Crystal data

  • C17H15BrO2
  • M r = 331.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1356-efi1.jpg
  • a = 4.0516 (1) Å
  • b = 9.6501 (2) Å
  • c = 17.9120 (4) Å
  • β = 92.396 (1)°
  • V = 699.72 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.94 mm−1
  • T = 100.0 (1) K
  • 0.53 × 0.31 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.305, T max = 0.641 (expected range = 0.289–0.607)
  • 14837 measured reflections
  • 5989 independent reflections
  • 4682 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.093
  • S = 1.04
  • 5989 reflections
  • 182 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.69 e Å−3
  • Δρmin = −0.65 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2764 Friedel pairs
  • Flack parameter: 0.021 (8)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018850/ci2619sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018850/ci2619Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Extensive research in recent years suggests organic materials to be the ideal candidates for tailoring the material properties. As an interesting type of organic materials, chalcone and its derivatives have received much attention from physicists, chemists and material scientists who have been extensively investigating their optical, physical and chemical properties for fundamental understanding and technological applications (Chopra et al., 2007; Lokaj et al., 2001; Low et al., 2002; Sathiya Moorthi et al., 2005a,b; Schmalle et al., 1990; Wang et al., 2004). Earlier studies have indicated that chalcone and its derivatives are potential candidates for optical limiting applications (Gu et al., 2008a,b). Owing to their electronic structures, chalcones also find unique applications in fluorescent probes for the sensing of metal ions (DiCesare et al., 2000; Jiang et al., 1994), and in biological use (Nel et al., 1998). The chalcone derivatives with typical D-π-A mode have been reported to crystallize in a noncentrosymmetric crystal structure and possess second harmonic generation properties (Patil et al., 2006; Patil & Dharmaprakash, 2007; Patil et al., 2007b). In our previous investigation, the crystal structure of 1-(4-chlorophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one has been reported (Patil et al., 2007a). To further understand the structure-property relationship, the title chalcone derivative was synthesized with ethoxy as an electron-donor group. The title compound crystallized in the non-centrosymmetric monoclinic P21 space group and therefore it should exhibit second-order nonlinear optical properties.

The title molecule (Fig.1) is nearly planar and exists in an E configuration with respect to the C8═C9 double bond [1.341 (3) Å]; the C7–C8–C9–C10 torsion angle is -177.6 (2)°. The dihedral angle between rings A and B is 10.09 (11)°. The enone unit (C7–C9/O1) is essentially planar, with a maximum deviation of 0.040 (2) Å for atom C8. The mean plane through the enone unit makes dihedral angles of 12.05 (11)° and 9.87 (11)° with the planes of rings A and B, respectively. The planar ethoxy group [C13—O2—C16—C17 = 176.3 (2)°] is almost coplanar with the ring B [C16—O2—C13—C12 of -2.1 (3)°]. The deviations of atoms O2, C16 and C17 from ring B are 0.007 (2), 0.052 (3) and -0.056 (3) Å, respectively. A weak C9–H9A···O1 interaction generates an S(5) ring motif. The bond distances and angles have normal values (Allen et al., 1987) and are comparable with those observed in related structures (Patil et al., 2007a,b).

In the crystal structure, the molecules are linked by C—H···O hydrogen bonds (Table 1) to form a zigzag ribbon-like structure along the b direction (Fig.2 and Fig.3).

Experimental

The title compound was synthesized by the condensation of 4-ethoxybenzaldehyde (0.01mol, 1.39 ml) with 3-bromoacetophenone (0.01 mol, 1.99 g)) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 3 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 4 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from acetone.

Refinement

All H atoms were placed in calculated positions, with C-H = 0.93 Å, Uiso = 1.2Ueq(C) for aromatic and CH, C-H = 0.97 Å, Uiso = 1.2Ueq(C) for CH2 and C-H = 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.81 Å from Br1 and the deepest hole is located at 0.76 Å from Br1.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line represent a C—H···O interaction.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
Fig. 3.
The crystal packing of the title compound, showing zigzag ribbon-like structure running along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H15BrO2F000 = 336
Mr = 331.19Dx = 1.572 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5989 reflections
a = 4.0516 (1) Åθ = 1.1–35.0º
b = 9.6501 (2) ŵ = 2.94 mm1
c = 17.9120 (4) ÅT = 100.0 (1) K
β = 92.396 (1)ºBlock, colourless
V = 699.72 (3) Å30.53 × 0.31 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5989 independent reflections
Radiation source: fine-focus sealed tube4682 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 35.0º
T = 100.0(1) Kθmin = 1.1º
ω scansh = −6→6
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −15→15
Tmin = 0.305, Tmax = 0.642l = −28→23
14837 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034  w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.69 e Å3
5989 reflectionsΔρmin = −0.65 e Å3
182 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 2764 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.021 (8)
Secondary atom site location: difference Fourier map

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.44099 (5)0.22151 (3)0.509606 (11)0.02359 (7)
O10.6257 (5)0.16393 (19)0.80200 (10)0.0229 (4)
O20.0554 (4)0.29630 (17)1.23694 (9)0.0191 (3)
C10.4078 (6)0.2599 (2)0.66571 (13)0.0179 (4)
H1A0.53200.17890.66860.021*
C20.3124 (6)0.3148 (2)0.59698 (13)0.0174 (4)
C30.1291 (6)0.4369 (2)0.59085 (14)0.0194 (4)
H3A0.06680.47310.54430.023*
C40.0418 (6)0.5031 (2)0.65597 (14)0.0194 (4)
H4A−0.07990.58480.65280.023*
C50.1332 (6)0.4494 (2)0.72574 (14)0.0173 (4)
H5A0.07250.49480.76890.021*
C60.3170 (6)0.3266 (2)0.73090 (13)0.0155 (4)
C70.4277 (6)0.2592 (2)0.80334 (13)0.0163 (4)
C80.2936 (6)0.3067 (2)0.87445 (13)0.0170 (4)
H8A0.14880.38140.87560.020*
C90.3862 (5)0.2391 (3)0.93731 (12)0.0162 (4)
H9A0.53800.16810.93130.019*
C100.2857 (6)0.2599 (2)1.01363 (13)0.0161 (4)
C110.0989 (6)0.3739 (2)1.03642 (13)0.0165 (4)
H11A0.02630.43891.00110.020*
C120.0207 (6)0.3914 (2)1.11050 (13)0.0171 (4)
H12A−0.09900.46841.12490.020*
C130.1238 (6)0.2920 (2)1.16333 (13)0.0156 (4)
C140.3094 (6)0.1789 (2)1.14161 (13)0.0169 (4)
H14A0.37920.11311.17680.020*
C150.3906 (6)0.1639 (2)1.06790 (13)0.0166 (4)
H15A0.51730.08841.05420.020*
C16−0.1265 (6)0.4130 (3)1.26362 (14)0.0194 (5)
H16A−0.33550.42251.23560.023*
H16B−0.00100.49781.25840.023*
C17−0.1832 (9)0.3845 (3)1.34460 (16)0.0323 (7)
H17C−0.30140.46051.36540.048*
H17A0.02560.37361.37130.048*
H17B−0.31010.30101.34880.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02512 (11)0.03165 (12)0.01422 (9)−0.00028 (13)0.00341 (7)−0.00396 (12)
O10.0289 (10)0.0226 (8)0.0170 (8)0.0094 (7)0.0001 (7)0.0002 (7)
O20.0236 (9)0.0196 (8)0.0144 (8)0.0049 (7)0.0052 (6)0.0037 (6)
C10.0184 (10)0.0188 (10)0.0165 (10)−0.0003 (7)0.0022 (8)0.0009 (7)
C20.0153 (10)0.0197 (10)0.0173 (11)−0.0035 (8)0.0026 (8)−0.0029 (8)
C30.0210 (11)0.0199 (10)0.0175 (11)−0.0043 (9)0.0006 (8)0.0042 (9)
C40.0200 (12)0.0149 (10)0.0231 (12)−0.0007 (9)−0.0016 (9)0.0017 (9)
C50.0201 (11)0.0150 (10)0.0166 (11)−0.0017 (8)0.0004 (8)−0.0012 (8)
C60.0186 (10)0.0132 (9)0.0147 (10)−0.0024 (8)0.0011 (8)−0.0004 (7)
C70.0179 (10)0.0145 (9)0.0164 (10)−0.0011 (7)0.0004 (8)−0.0020 (7)
C80.0190 (11)0.0168 (10)0.0151 (10)0.0003 (8)0.0006 (8)−0.0025 (8)
C90.0176 (9)0.0141 (12)0.0168 (9)−0.0005 (8)0.0007 (7)−0.0023 (8)
C100.0172 (10)0.0142 (9)0.0170 (10)−0.0027 (7)0.0009 (8)−0.0001 (7)
C110.0179 (10)0.0150 (9)0.0165 (10)−0.0013 (8)−0.0008 (8)0.0028 (8)
C120.0189 (11)0.0147 (9)0.0176 (11)−0.0013 (8)0.0013 (8)0.0003 (8)
C130.0144 (10)0.0161 (10)0.0166 (10)−0.0015 (8)0.0036 (8)0.0004 (8)
C140.0184 (11)0.0136 (8)0.0186 (11)0.0009 (7)0.0005 (8)0.0043 (7)
C150.0161 (10)0.0150 (9)0.0188 (11)0.0007 (8)0.0011 (8)0.0004 (8)
C160.0232 (12)0.0161 (10)0.0194 (11)−0.0015 (8)0.0060 (9)−0.0003 (8)
C170.0467 (19)0.0282 (13)0.0230 (14)0.0146 (13)0.0146 (12)0.0044 (11)

Geometric parameters (Å, °)

Br1—C21.897 (2)C9—C101.457 (3)
O1—C71.221 (3)C9—H9A0.93
O2—C131.359 (3)C10—C151.397 (3)
O2—C161.439 (3)C10—C111.405 (3)
C1—C21.381 (3)C11—C121.387 (3)
C1—C61.396 (3)C11—H11A0.93
C1—H1A0.93C12—C131.399 (3)
C2—C31.394 (3)C12—H12A0.93
C3—C41.389 (3)C13—C141.390 (3)
C3—H3A0.93C14—C151.381 (3)
C4—C51.389 (4)C14—H14A0.93
C4—H4A0.93C15—H15A0.93
C5—C61.401 (3)C16—C171.504 (4)
C5—H5A0.93C16—H16A0.97
C6—C71.503 (3)C16—H16B0.97
C7—C81.478 (3)C17—H17C0.96
C8—C91.341 (3)C17—H17A0.96
C8—H8A0.93C17—H17B0.96
C13—O2—C16118.31 (18)C15—C10—C9118.2 (2)
C2—C1—C6119.7 (2)C11—C10—C9123.8 (2)
C2—C1—H1A120.2C12—C11—C10121.4 (2)
C6—C1—H1A120.2C12—C11—H11A119.3
C1—C2—C3121.5 (2)C10—C11—H11A119.3
C1—C2—Br1118.50 (18)C11—C12—C13119.3 (2)
C3—C2—Br1119.98 (18)C11—C12—H12A120.3
C4—C3—C2118.4 (2)C13—C12—H12A120.3
C4—C3—H3A120.8O2—C13—C14115.5 (2)
C2—C3—H3A120.8O2—C13—C12124.6 (2)
C3—C4—C5121.1 (2)C14—C13—C12119.9 (2)
C3—C4—H4A119.5C15—C14—C13120.2 (2)
C5—C4—H4A119.5C15—C14—H14A119.9
C4—C5—C6119.7 (2)C13—C14—H14A119.9
C4—C5—H5A120.1C14—C15—C10121.2 (2)
C6—C5—H5A120.1C14—C15—H15A119.4
C1—C6—C5119.5 (2)C10—C15—H15A119.4
C1—C6—C7116.3 (2)O2—C16—C17106.1 (2)
C5—C6—C7124.2 (2)O2—C16—H16A110.5
O1—C7—C8121.0 (2)C17—C16—H16A110.5
O1—C7—C6118.8 (2)O2—C16—H16B110.5
C8—C7—C6120.19 (19)C17—C16—H16B110.5
C9—C8—C7118.2 (2)H16A—C16—H16B108.7
C9—C8—H8A120.9C16—C17—H17C109.5
C7—C8—H8A120.9C16—C17—H17A109.5
C8—C9—C10129.9 (2)H17C—C17—H17A109.5
C8—C9—H9A115.0C16—C17—H17B109.5
C10—C9—H9A115.0H17C—C17—H17B109.5
C15—C10—C11118.0 (2)H17A—C17—H17B109.5
C6—C1—C2—C30.7 (4)C7—C8—C9—C10−177.6 (2)
C6—C1—C2—Br1179.90 (17)C8—C9—C10—C15172.5 (3)
C1—C2—C3—C4−0.2 (4)C8—C9—C10—C11−9.9 (4)
Br1—C2—C3—C4−179.42 (18)C15—C10—C11—C120.2 (3)
C2—C3—C4—C5−0.2 (4)C9—C10—C11—C12−177.5 (2)
C3—C4—C5—C60.1 (4)C10—C11—C12—C13−1.4 (4)
C2—C1—C6—C5−0.7 (3)C16—O2—C13—C14178.0 (2)
C2—C1—C6—C7179.4 (2)C16—O2—C13—C12−2.1 (3)
C4—C5—C6—C10.3 (3)C11—C12—C13—O2−178.4 (2)
C4—C5—C6—C7−179.8 (2)C11—C12—C13—C141.5 (3)
C1—C6—C7—O110.3 (3)O2—C13—C14—C15179.5 (2)
C5—C6—C7—O1−169.6 (2)C12—C13—C14—C15−0.4 (3)
C1—C6—C7—C8−168.7 (2)C13—C14—C15—C10−0.8 (4)
C5—C6—C7—C811.4 (3)C11—C10—C15—C141.0 (3)
O1—C7—C8—C9−2.3 (3)C9—C10—C15—C14178.7 (2)
C6—C7—C8—C9176.7 (2)C13—O2—C16—C17176.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9A···O10.932.362.746 (3)105
C16—H16B···O1i0.972.493.400 (3)157

Symmetry codes: (i) −x+1, y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2619).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, o704–o710. [PubMed]
  • DiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett.43, 2615–2618.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008a). J. Appl. Phys.103, 103511-1–103511-6.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008b). Appl. Phys. Lett.92, 091118-1–091118-3.
  • Jiang, Y. B., Wang, X. J. & Lin, L. (1994). J. Phys. Chem.98, 12367–12372.
  • Lokaj, J., Kettmann, V., Marchalin, S. & Sikoraiova, J. (2001). Acta Cryst. C57, 735–736. [PubMed]
  • Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, o42–o45. [PubMed]
  • Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett.39, 5623–5626.
  • Patil, P. S. & Dharmaprakash, S. M. (2007). J. Cryst. Growth, 3053, 218–221.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o59–o60.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o896–o898.
  • Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005a). Acta Cryst. E61, o480–o482.
  • Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005b). Acta Cryst. E61, o743–o745.
  • Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712–1715. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, o696–o698. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography