PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1359.
Published online 2008 June 28. doi:  10.1107/S1600536808019089
PMCID: PMC2961680

3-[5-(4-Fluoro­phen­yl)-1,3,4-thia­diazol-2-yl]-2-(4-methoxy­phen­yl)-1,3-thia­zolidin-4-one

Abstract

The title compound, C18H14FN3O2S2, was synthesized by the reaction of 5-(4-fluoro­phen­yl)-N-(4-methoxy­benzyl­idene)-1,3,4-thia­diazol-2-amine and mercaptoacetic acid. The thia­zolidinone ring adopts a twist conformation. The 4-methoxy­phenyl ring is almost perpendicular to the thia­diazole ring, making a dihedral angle of 88.4 (3)°. The 4-fluoro­phenyl ring is nearly coplanar with the thia­diazole ring, the dihedral angle being 6.8 (3)°. The crystal structure involves C—H(...)N, C—H(...)O and C—H(...)S hydrogen bonds.

Related literature

For related literature, see: Arun et al. (1999 [triangle]); Chen et al. (2000 [triangle]); Kidwai et al. (2000 [triangle]); Vicentini et al. (1998 [triangle]); Wasfy et al. (1996 [triangle]); Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1359-scheme1.jpg

Experimental

Crystal data

  • C18H14FN3O2S2
  • M r = 387.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1359-efi1.jpg
  • a = 6.4550 (13) Å
  • b = 8.9200 (18) Å
  • c = 16.483 (3) Å
  • α = 75.78 (3)°
  • β = 82.44 (3)°
  • γ = 71.11 (3)°
  • V = 869.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 298 (2) K
  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.967, T max = 0.984
  • 3421 measured reflections
  • 3120 independent reflections
  • 2054 reflections with I > 2σ(I)
  • R int = 0.023
  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070
  • wR(F 2) = 0.186
  • S = 1.00
  • 3120 reflections
  • 229 parameters
  • 48 restraints
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019089/at2579sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019089/at2579Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Hua-Qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit certain herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). Some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996).

We report here the crystal structure of the titled compound, (I). The molecular strucutre of (I) is shown in Fig.1. In this structure, the thiazolidinone adopts a twist conformation, the dihedral angle between the C9/S1/C10 and C9/N1/C10 is 15.5 (7)°. The thiadiazole ring is an aromatic heterocyclic ring, all atoms are in the same plane. The angle between the thiadiazole ring and the 4-fluorophenyl ring is 6.8 (3)°. The 4-methoxyphenyl ring is nearly perpendicular to the thiadiazole ring, with the dihedral angle being 88.4 (3)°. There are intramolecular C—H···S and C—H···N hydrogen bonding interactions in the molecule structure. In the crystal structure, intermolecular C—H···O hydrogen bonding interactionss link the molecules (Table 1 and Fig. 2).

Experimental

5-(4-Fluorophenyl)-N-(4-methoxybenzylidene)-1,3,4-thiadiazol -2-amine(5 mmol) and mercapto-acetic acid (5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) [m.p. 341–345 K]). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were positioned geometrically, with C—H = 0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Figures

Fig. 1.
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular C—H···S and C—H···N hydrogen bonding interactions. ...
Fig. 2.
A packing diagram for (I). Dashed lines indicate intramolecular C—H···S and C—H···N, and intermolecular C—H···O hydrogen bonding interactionss.

Crystal data

C18H14FN3O2S2Z = 2
Mr = 387.44F000 = 400
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Melting point = 341–345 K
a = 6.4550 (13) ÅMo Kα radiation λ = 0.71073 Å
b = 8.9200 (18) ÅCell parameters from 25 reflections
c = 16.483 (3) Åθ = 9–12º
α = 75.78 (3)ºµ = 0.34 mm1
β = 82.44 (3)ºT = 298 (2) K
γ = 71.11 (3)ºBlock, colourless
V = 869.0 (3) Å30.10 × 0.05 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.2º
Monochromator: graphiteθmin = 1.3º
T = 298(2) Kh = −7→7
ω/2θ scansk = −10→10
Absorption correction: ψ scan(North et al., 1968)l = 0→19
Tmin = 0.967, Tmax = 0.9843 standard reflections
3421 measured reflections every 200 reflections
3120 independent reflections intensity decay: none
2054 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.186  w = 1/[σ2(Fo2) + (0.05P)2 + 2.5P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3120 reflectionsΔρmax = 0.41 e Å3
229 parametersΔρmin = −0.52 e Å3
48 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.1232 (3)1.32787 (19)0.18123 (10)0.0698 (5)
S20.7085 (2)0.94841 (16)0.40097 (8)0.0525 (4)
F1.1681 (6)0.3585 (4)0.7202 (2)0.0868 (11)
O10.3391 (7)0.6926 (6)0.0237 (3)0.0873 (14)
O20.6785 (6)1.2181 (5)0.2766 (2)0.0669 (11)
N10.4009 (7)1.1081 (5)0.2832 (3)0.0524 (10)
N20.3572 (7)0.8821 (6)0.3839 (3)0.0624 (12)
N30.4550 (7)0.7685 (6)0.4514 (3)0.0615 (12)
C10.1565 (11)0.6619 (9)−0.0019 (4)0.084 (2)
H1A0.20710.5921−0.04100.126*
H1B0.05570.7626−0.02810.126*
H1C0.08390.61050.04620.126*
C20.2971 (9)0.7920 (7)0.0792 (4)0.0628 (14)
C30.0998 (10)0.8504 (8)0.1184 (4)0.0731 (16)
H3B−0.02050.82310.10840.088*
C40.0759 (9)0.9502 (8)0.1733 (4)0.0687 (16)
H4A−0.06040.98690.20060.082*
C50.2469 (8)0.9971 (7)0.1889 (3)0.0550 (12)
C60.4424 (11)0.9355 (10)0.1499 (5)0.107 (3)
H6A0.56300.96210.16020.128*
C70.4704 (12)0.8350 (10)0.0956 (5)0.109
H7A0.60790.79590.06970.131*
C80.2051 (8)1.1190 (6)0.2422 (3)0.0544 (13)
H8A0.08901.10420.28520.065*
C90.3907 (10)1.3489 (8)0.1783 (4)0.0770 (18)
H9A0.47071.33040.12580.092*
H9B0.37971.45730.18350.092*
C100.5063 (9)1.2245 (7)0.2508 (3)0.0567 (13)
C110.4717 (8)0.9827 (6)0.3532 (3)0.0505 (12)
C120.6418 (8)0.7842 (6)0.4677 (3)0.0470 (11)
C130.7762 (8)0.6774 (6)0.5357 (3)0.0480 (11)
C140.9628 (9)0.7058 (7)0.5547 (3)0.0608 (14)
H14A1.00090.79660.52430.073*
C151.0908 (10)0.6009 (7)0.6181 (4)0.0668 (15)
H15A1.21140.62230.63240.080*
C161.0368 (9)0.4640 (7)0.6596 (3)0.0613 (15)
C170.8542 (10)0.4310 (7)0.6425 (3)0.0647 (15)
H17A0.81890.33900.67280.078*
C180.7262 (9)0.5372 (6)0.5799 (3)0.0584 (14)
H18A0.60440.51560.56680.070*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0724 (10)0.0617 (9)0.0743 (10)−0.0157 (8)−0.0163 (8)−0.0123 (8)
S20.0476 (7)0.0587 (8)0.0565 (8)−0.0219 (6)−0.0011 (6)−0.0152 (6)
F0.092 (3)0.081 (2)0.075 (2)−0.008 (2)−0.022 (2)−0.0116 (19)
O10.085 (3)0.102 (3)0.098 (3)−0.038 (3)0.013 (3)−0.059 (3)
O20.054 (2)0.069 (3)0.081 (3)−0.0299 (19)−0.005 (2)−0.008 (2)
N10.052 (2)0.056 (3)0.056 (3)−0.023 (2)0.000 (2)−0.017 (2)
N20.057 (3)0.064 (3)0.069 (3)−0.029 (2)−0.007 (2)−0.003 (2)
N30.058 (3)0.068 (3)0.063 (3)−0.028 (2)−0.007 (2)−0.008 (2)
C10.100 (5)0.094 (5)0.075 (4)−0.038 (4)−0.012 (4)−0.032 (4)
C20.064 (3)0.061 (3)0.067 (3)−0.015 (3)−0.002 (3)−0.027 (3)
C30.064 (3)0.089 (4)0.077 (4)−0.026 (3)0.003 (3)−0.038 (3)
C40.051 (3)0.090 (4)0.072 (4)−0.024 (3)0.011 (3)−0.035 (3)
C50.050 (3)0.062 (3)0.054 (3)−0.016 (2)−0.004 (2)−0.014 (2)
C60.062 (4)0.139 (6)0.152 (6)−0.034 (4)0.011 (4)−0.096 (5)
C70.0700.1480.146−0.0400.021−0.105
C80.046 (3)0.059 (3)0.061 (3)−0.018 (2)−0.003 (2)−0.016 (3)
C90.083 (4)0.081 (4)0.065 (4)−0.037 (4)0.005 (3)−0.001 (3)
C100.055 (3)0.061 (3)0.058 (3)−0.024 (3)0.008 (3)−0.017 (3)
C110.049 (3)0.057 (3)0.051 (3)−0.021 (2)0.004 (2)−0.018 (2)
C120.046 (3)0.047 (3)0.047 (3)−0.013 (2)0.005 (2)−0.014 (2)
C130.042 (3)0.050 (3)0.048 (3)−0.007 (2)0.006 (2)−0.016 (2)
C140.060 (3)0.072 (4)0.057 (3)−0.028 (3)0.001 (3)−0.016 (3)
C150.065 (4)0.075 (4)0.061 (4)−0.014 (3)−0.015 (3)−0.019 (3)
C160.065 (4)0.059 (3)0.045 (3)0.003 (3)−0.012 (3)−0.008 (3)
C170.074 (4)0.058 (3)0.058 (3)−0.018 (3)−0.004 (3)−0.005 (3)
C180.060 (3)0.059 (3)0.063 (3)−0.027 (3)0.000 (3)−0.017 (3)

Geometric parameters (Å, °)

S1—C91.790 (6)C4—H4A0.9300
S1—C81.828 (5)C5—C61.349 (8)
S2—C111.716 (5)C5—C81.497 (7)
S2—C121.741 (5)C6—C71.373 (9)
F—C161.359 (6)C6—H6A0.9300
O1—C21.368 (6)C7—H7A0.9300
O1—C11.428 (7)C8—H8A0.9800
O2—C101.221 (6)C9—C101.504 (8)
N1—C101.384 (6)C9—H9A0.9700
N1—C111.402 (6)C9—H9B0.9700
N1—C81.475 (6)C12—C131.454 (7)
N2—C111.309 (6)C13—C141.396 (7)
N2—N31.371 (6)C13—C181.396 (7)
N3—C121.326 (6)C14—C151.377 (8)
C1—H1A0.9600C14—H14A0.9300
C1—H1B0.9600C15—C161.373 (8)
C1—H1C0.9600C15—H15A0.9300
C2—C31.354 (8)C16—C171.381 (8)
C2—C71.371 (8)C17—C181.372 (7)
C3—C41.380 (8)C17—H17A0.9300
C3—H3B0.9300C18—H18A0.9300
C4—C51.373 (7)
C9—S1—C893.5 (3)C5—C8—H8A109.0
C11—S2—C1285.8 (2)S1—C8—H8A109.0
C2—O1—C1117.6 (5)C10—C9—S1106.9 (4)
C10—N1—C11122.7 (4)C10—C9—H9A110.3
C10—N1—C8118.0 (4)S1—C9—H9A110.3
C11—N1—C8119.3 (4)C10—C9—H9B110.3
C11—N2—N3110.4 (4)S1—C9—H9B110.3
C12—N3—N2113.4 (4)H9A—C9—H9B108.6
O1—C1—H1A109.5O2—C10—N1122.5 (5)
O1—C1—H1B109.5O2—C10—C9125.7 (5)
H1A—C1—H1B109.5N1—C10—C9111.7 (5)
O1—C1—H1C109.5N2—C11—N1119.7 (4)
H1A—C1—H1C109.5N2—C11—S2116.8 (4)
H1B—C1—H1C109.5N1—C11—S2123.4 (4)
C3—C2—O1125.2 (5)N3—C12—C13123.5 (5)
C3—C2—C7118.1 (6)N3—C12—S2113.5 (4)
O1—C2—C7116.7 (5)C13—C12—S2123.0 (4)
C2—C3—C4120.4 (6)C14—C13—C18118.8 (5)
C2—C3—H3B119.8C14—C13—C12121.6 (5)
C4—C3—H3B119.8C18—C13—C12119.5 (5)
C5—C4—C3122.1 (5)C15—C14—C13120.7 (5)
C5—C4—H4A118.9C15—C14—H14A119.7
C3—C4—H4A118.9C13—C14—H14A119.7
C6—C5—C4116.3 (5)C16—C15—C14118.6 (5)
C6—C5—C8124.1 (5)C16—C15—H15A120.7
C4—C5—C8119.5 (5)C14—C15—H15A120.7
C5—C6—C7122.5 (6)F—C16—C15118.2 (5)
C5—C6—H6A118.7F—C16—C17119.3 (6)
C7—C6—H6A118.7C15—C16—C17122.5 (5)
C2—C7—C6120.5 (6)C18—C17—C16118.5 (5)
C2—C7—H7A119.7C18—C17—H17A120.8
C6—C7—H7A119.7C16—C17—H17A120.8
N1—C8—C5113.5 (4)C17—C18—C13120.9 (5)
N1—C8—S1103.5 (3)C17—C18—H18A119.6
C5—C8—S1112.5 (4)C13—C18—H18A119.6
N1—C8—H8A109.0
C11—N2—N3—C12−1.9 (6)S1—C9—C10—O2−168.3 (5)
C1—O1—C2—C37.2 (9)S1—C9—C10—N115.5 (6)
C1—O1—C2—C7−172.7 (7)N3—N2—C11—N1179.5 (4)
O1—C2—C3—C4−180.0 (6)N3—N2—C11—S21.2 (6)
C7—C2—C3—C40.0 (10)C10—N1—C11—N2175.9 (5)
C2—C3—C4—C51.5 (10)C8—N1—C11—N2−3.5 (7)
C3—C4—C5—C6−2.3 (10)C10—N1—C11—S2−5.9 (7)
C3—C4—C5—C8173.7 (6)C8—N1—C11—S2174.7 (4)
C4—C5—C6—C71.8 (12)C12—S2—C11—N2−0.2 (4)
C8—C5—C6—C7−174.0 (7)C12—S2—C11—N1−178.4 (4)
C3—C2—C7—C6−0.5 (12)N2—N3—C12—C13−179.5 (4)
O1—C2—C7—C6179.5 (8)N2—N3—C12—S21.8 (6)
C5—C6—C7—C2−0.4 (14)C11—S2—C12—N3−0.9 (4)
C10—N1—C8—C5104.3 (5)C11—S2—C12—C13−179.7 (4)
C11—N1—C8—C5−76.2 (6)N3—C12—C13—C14−174.9 (5)
C10—N1—C8—S1−17.9 (5)S2—C12—C13—C143.7 (7)
C11—N1—C8—S1161.6 (4)N3—C12—C13—C189.1 (7)
C6—C5—C8—N1−28.9 (9)S2—C12—C13—C18−172.3 (4)
C4—C5—C8—N1155.4 (5)C18—C13—C14—C15−2.4 (8)
C6—C5—C8—S188.3 (7)C12—C13—C14—C15−178.4 (5)
C4—C5—C8—S1−87.4 (6)C13—C14—C15—C162.8 (8)
C9—S1—C8—N122.4 (4)C14—C15—C16—F177.9 (5)
C9—S1—C8—C5−100.6 (4)C14—C15—C16—C17−2.6 (9)
C8—S1—C9—C10−22.2 (5)F—C16—C17—C18−178.7 (5)
C11—N1—C10—O26.3 (8)C15—C16—C17—C181.9 (9)
C8—N1—C10—O2−174.3 (5)C16—C17—C18—C13−1.4 (8)
C11—N1—C10—C9−177.4 (5)C14—C13—C18—C171.6 (8)
C8—N1—C10—C92.1 (7)C12—C13—C18—C17177.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···N10.932.602.917 (9)101
C8—H8A···O2i0.982.523.233 (7)129
C14—H14A···S20.932.743.146 (6)107
C18—H18A···N30.932.572.881 (7)100

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2579).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.
  • Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem.48, 5312–5315. [PubMed]
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc.77, 46–48.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem.35, 29–36.
  • Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography