PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1361.
Published online 2008 June 28. doi:  10.1107/S1600536808019016
PMCID: PMC2961679

4-(2,3-Dimethyl­phen­yl)piperazin-1-ium chloride monohydrate

Abstract

The title compound, C12H19N2 +·Cl·H2O, contains a network of 4-(2,3-dimethyl­phen­yl)piperazin-1-ium cations, water mol­ecules and chloride anions. The crystal packing is influenced by O—H(...)Cl, N—H(...)Cl, N—H(...)O, C—H(...)O and C—H(...)Cl hydrogen bonds, resulting in structure with an open-framework architecture.

Related literature

For related literature, see: Ben Gharbia et al. (2005 [triangle], 2007 [triangle]); Bernstein et al. (1995 [triangle]); Pajewski et al. (2004 [triangle]); Sessler et al. (2003 [triangle]); Schmidtchen & Berge (1997 [triangle]). For the refinement weighting scheme, see: Prince (1982 [triangle]); Watkin (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1361-scheme1.jpg

Experimental

Crystal data

  • C12H19N2 +·Cl·H2O
  • M r = 244.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1361-efi1.jpg
  • a = 7.5439 (3) Å
  • b = 9.4204 (3) Å
  • c = 10.4347 (4) Å
  • α = 72.733 (2)°
  • β = 74.152 (2)°
  • γ = 70.250 (2)°
  • V = 654.05 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 150 K
  • 0.13 × 0.12 × 0.09 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 5719 measured reflections
  • 3073 independent reflections
  • 2601 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.035
  • S = 1.10
  • 2491 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019016/cf2207sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019016/cf2207Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

The coordination chemistry of anions is a fast-growing area of supramolecular chemistry (Schmidtchen & Berge, 1997), on account of the importance of anion binding, recognition and transport in many biochemical processes (Pajewski et al., 2004). Thus, the Cl- anion has been successfully used to assemble double-helical motifs of various molecules (Sessler et al., 2003). Here a new member of this family, the title compound, is presented, which was obtained during our studies of the preparation of new organic hydrochloride compounds. As shown in Fig. 1, the asymmetric unit of the crystal structure of the title compound contains a 4-(2,3-dimethylphenyl)piperazin-1-ium cation, a chloride anion and a water molecule, associated in a hydrogen-bonded network. Two water molecules and two Cl- anions are interconnected through O—H···Cl hydrogen bonds, forming an 8-membered ring with graph-set R24(8) Bernstein et al., 1995). These entities are connected to two antiparallel organic cations via N—H···Cl, N—H···O and C—H···Cl hydrogen-bonding interactions to construct a convoluted hydrogen-bonded chain which runs in the c-axis direction (Fig. 2). When projected along the b axis, the chains have a marked zigzag structure and somewhat resemble a helix (Fig. 3). In addition to the hydrogen-bonding associations to Cl1 and O1, the organic cations have a second role by linking these chains to each other to form layers parallel to the bc plane through C—H···O hydrogen bonds. Fig. 3 shows that these planes are interconnected by NH2+ groups to form an open framework architecture through hydrogen-bond interactions. An examination of the organic group geometrical features shows that the carbon atoms in the benzene ring of the title compound have a good coplanarity and they form a conjugated ring with an average deviation of 0.013 Å. The mean value of the C—C bond lengths [1.3967 (17) Å], which is between a single bond and a double bond, agrees with that in phenylpiperazinium tetrachloridozincate(II) [1.384 (4) Å] (Ben Gharbia et al., 2005). The piperazine-1,4-diium ring of the title compound adopts a typical chair conformation and its geometric parameters [dav(C—N) = 1.4818 (16) and dav(C—C) = 1.5437 (17) Å] are in full agreement with those found in 4-(2,3-dimethylphenyl)piperazin-1-ium tetrachloridozincate(II) (Ben Gharbia et al., 2007).

Experimental

An aqueous 1M HCl solution and 1-(2,3-dimethylphenyl)piperazine in a 1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. Low-angle reflections possibly affected by the beam-stop and some other outliers were omitted from the refinement.

Figures

Fig. 1.
The asymmetric unit of (I), showing 40% probability displacement ellipsoids.
Fig. 2.
The packing of (I), viewed down the a axis, showing the O—H···Cl, N—H···Cl, N—H···O, C—H···O and C—H···Cl ...
Fig. 3.
The packing of (I), viewed down the b axis, showing the zigzag character of the structure. Hydrogen bonds are indicated by dashed lines.

Crystal data

C12H19N2+·Cl·H2OZ = 2
Mr = 244.76F000 = 264
Triclinic, P1Dx = 1.243 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71069 Å
a = 7.5439 (3) ÅCell parameters from 2750 reflections
b = 9.4204 (3) Åθ = 0.4–27.9º
c = 10.4347 (4) ŵ = 0.28 mm1
α = 72.733 (2)ºT = 150 K
β = 74.152 (2)ºBlock, colorless
γ = 70.250 (2)º0.13 × 0.12 × 0.09 mm
V = 654.05 (4) Å3

Data collection

Nonius KappaCCD diffractometer2601 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 150 Kθmax = 27.9º
[var phi] and ω scansθmin = 2.1º
Absorption correction: noneh = −9→9
5719 measured reflectionsk = −12→12
3073 independent reflectionsl = −13→13

Refinement

Refinement on FHydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036  w = [1-(Fo-Fc)2/36σ2(F)]2/[0.443T0(x) + 0.129T1(x) + 0.131T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982; Watkin, 1994)
wR(F2) = 0.035(Δ/σ)max = 0.0004
S = 1.10Δρmax = 0.25 e Å3
2491 reflectionsΔρmin = −0.20 e Å3
145 parametersExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.09326 (17)0.26100 (14)0.53871 (13)0.0211
C2−0.08069 (18)0.18226 (14)0.67481 (13)0.0224
C3−0.24822 (19)0.15986 (14)0.76843 (13)0.0243
C4−0.42381 (18)0.21709 (15)0.72522 (14)0.0270
C5−0.43454 (18)0.29399 (16)0.59077 (14)0.0285
C6−0.26999 (18)0.31526 (15)0.49687 (13)0.0255
C70.18840 (18)0.14963 (15)0.38467 (14)0.0276
C80.38588 (19)0.16564 (16)0.30991 (15)0.0313
C90.24578 (19)0.45044 (15)0.26085 (13)0.0260
C100.05184 (17)0.42554 (14)0.33543 (13)0.0230
C110.1080 (2)0.12337 (17)0.72288 (15)0.0320
C12−0.2398 (2)0.07656 (18)0.91485 (14)0.0353
Cl10.77820 (5)0.34324 (4)0.11653 (4)0.0340
O10.78625 (14)0.68790 (12)0.00994 (10)0.0353
N10.07922 (14)0.28419 (12)0.44468 (11)0.0216
N20.36750 (15)0.31276 (13)0.20308 (12)0.0278
H10.78480.59950.05260.0528*
H20.90070.6873−0.01820.0528*
H30.48450.32700.16610.0430*
H40.31440.30850.13580.0437*
H5−0.53850.20580.79160.0322*
H6−0.55650.33520.56100.0341*
H7−0.27700.36590.40450.0295*
H80.11980.14100.32000.0321*
H90.20400.05610.45750.0315*
H100.45880.07900.26440.0369*
H110.45820.16950.37490.0356*
H120.31140.46420.32200.0314*
H130.22990.54290.18500.0309*
H14−0.02660.51620.37730.0269*
H15−0.01410.41800.26840.0273*
H160.20870.15940.65140.0467*
H170.14840.00980.74640.0473*
H180.09400.16060.80470.0484*
H19−0.1476−0.02820.91970.0537*
H20−0.20110.13640.95870.0526*
H21−0.36710.06790.96390.0532*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0204 (5)0.0193 (5)0.0239 (6)−0.0065 (4)−0.0025 (4)−0.0057 (5)
C20.0250 (6)0.0184 (5)0.0251 (6)−0.0079 (5)−0.0054 (5)−0.0040 (5)
C30.0289 (6)0.0211 (6)0.0243 (6)−0.0104 (5)−0.0022 (5)−0.0059 (5)
C40.0243 (6)0.0269 (6)0.0298 (7)−0.0099 (5)0.0020 (5)−0.0098 (5)
C50.0213 (6)0.0308 (7)0.0331 (7)−0.0073 (5)−0.0039 (5)−0.0081 (6)
C60.0231 (6)0.0273 (6)0.0250 (6)−0.0079 (5)−0.0040 (5)−0.0040 (5)
C70.0241 (6)0.0215 (6)0.0347 (7)−0.0077 (5)0.0025 (5)−0.0088 (5)
C80.0229 (6)0.0274 (7)0.0392 (8)−0.0073 (5)0.0025 (5)−0.0088 (6)
C90.0289 (6)0.0260 (6)0.0255 (6)−0.0128 (5)−0.0024 (5)−0.0061 (5)
C100.0236 (6)0.0224 (6)0.0220 (6)−0.0081 (5)−0.0026 (5)−0.0034 (5)
C110.0286 (7)0.0337 (7)0.0317 (7)−0.0115 (6)−0.0113 (5)0.0038 (6)
C120.0452 (8)0.0378 (8)0.0246 (7)−0.0210 (7)−0.0034 (6)−0.0016 (6)
Cl10.02788 (17)0.0430 (2)0.03519 (18)−0.01831 (14)−0.00224 (13)−0.00861 (14)
O10.0303 (5)0.0377 (6)0.0367 (5)−0.0128 (4)0.0007 (4)−0.0094 (4)
N10.0205 (5)0.0191 (5)0.0234 (5)−0.0059 (4)−0.0013 (4)−0.0044 (4)
N20.0229 (5)0.0332 (6)0.0291 (6)−0.0136 (4)0.0028 (4)−0.0101 (5)

Geometric parameters (Å, °)

C9—C101.5176 (17)C6—H70.947
C9—N21.4986 (17)C5—C41.3851 (19)
C9—H120.966C5—H60.968
C9—H130.985C4—C31.3957 (19)
C10—N11.4686 (16)C4—H50.965
C10—H141.005C3—C21.4070 (17)
C10—H150.993C3—C121.5038 (19)
C7—C81.5159 (17)C2—C111.5090 (17)
C7—N11.4701 (16)C12—H210.975
C7—H90.974C12—H200.974
C7—H80.991C12—H190.993
C8—N21.4900 (18)C11—H180.983
C8—H110.995C11—H160.981
C8—H100.989C11—H170.981
C1—C61.3979 (17)O1—H10.822
C1—C21.4060 (17)O1—H20.831
C1—N11.4391 (15)N2—H30.900
C6—C51.3886 (18)N2—H40.914
C10—C9—N2109.56 (10)C4—C5—H6120.8
C10—C9—H12111.0C5—C4—C3120.72 (12)
N2—C9—H12108.8C5—C4—H5120.5
C10—C9—H13110.3C3—C4—H5118.7
N2—C9—H13108.5C4—C3—C2119.63 (12)
H12—C9—H13108.6C4—C3—C12119.84 (12)
C9—C10—N1109.41 (10)C2—C3—C12120.53 (12)
C9—C10—H14109.0C3—C2—C1119.20 (11)
N1—C10—H14108.9C3—C2—C11119.40 (12)
C9—C10—H15108.6C1—C2—C11121.39 (11)
N1—C10—H15111.3C3—C12—H21109.5
H14—C10—H15109.6C3—C12—H20109.5
C8—C7—N1110.04 (10)H21—C12—H20107.6
C8—C7—H9108.4C3—C12—H19110.4
N1—C7—H9109.2H21—C12—H19109.8
C8—C7—H8109.4H20—C12—H19109.9
N1—C7—H8110.2C2—C11—H18109.7
H9—C7—H8109.5C2—C11—H16110.8
C7—C8—N2109.88 (11)H18—C11—H16109.0
C7—C8—H11110.1C2—C11—H17110.4
N2—C8—H11107.8H18—C11—H17108.5
C7—C8—H10111.2H16—C11—H17108.4
N2—C8—H10108.0H1—O1—H2107.1
H11—C8—H10109.9C7—N1—C10109.62 (10)
C6—C1—C2120.31 (11)C7—N1—C1112.16 (9)
C6—C1—N1121.24 (11)C10—N1—C1115.19 (10)
C2—C1—N1118.45 (11)C9—N2—C8112.04 (10)
C1—C6—C5119.86 (12)C9—N2—H3107.5
C1—C6—H7119.9C8—N2—H3109.3
C5—C6—H7120.2C9—N2—H4108.6
C6—C5—C4120.27 (12)C8—N2—H4110.2
C6—C5—H6118.9H3—N2—H4109.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H3···Cl10.902.183.069 (1)169
N2—H4···O1i0.911.862.776 (2)175
O1—H1···Cl10.822.323.120 (1)165
O1—H2···Cl1ii0.832.313.136 (1)171
C10—H15···Cl1iii0.992.873.846 (1)168
C12—H20···Cl1iv0.972.843.779 (3)161
C12—H19···O1v0.992.733.448 (2)130

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) x−1, y, z; (iv) x−1, y, z+1; (v) x−1, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2207).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct., 220, 333–334.
  • Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 27, x243–x244.
  • Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Pajewski, R., Ferdani, R., Schlesinger, P.-H. & Gokel, G.-W. (2004). Chem. Commun. pp. 160–161. [PubMed]
  • Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer.
  • Schmidtchen, F. P. & Berge, M. (1997). Chem. Rev.97, 1609–1646. [PubMed]
  • Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev.240, 17–150.
  • Watkin, D. (1994). Acta Cryst. A50, 411–437.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography