PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): o1219.
Published online 2008 June 7. doi:  10.1107/S1600536808016620
PMCID: PMC2961677

(E)-N-(2,3,4-Trimeth­oxy-6-methyl­benzyl­idene)aniline

Abstract

In the title compound, C17H19NO3, the C—C=N—C torsion angle between the benzene and phenyl rings is −177.3 (2)°, and the dihedral angle between the rings is 54.6 (2)°. The crystal structure is stabilized by intra­molecular hydrogen bonds and weak π–π and C—H(...)π inter­actions.

Related literature

For related literature, see: Zhang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1219-scheme1.jpg

Experimental

Crystal data

  • C17H19NO3
  • M r = 285.33
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1219-efi1.jpg
  • a = 8.3126 (13) Å
  • b = 9.9938 (17) Å
  • c = 10.8661 (19) Å
  • α = 110.102 (2)°
  • β = 111.995 (2)°
  • γ = 92.7000 (10)°
  • V = 769.8 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 298 (2) K
  • 0.50 × 0.48 × 0.47 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.959, T max = 0.962
  • 3966 measured reflections
  • 2650 independent reflections
  • 1571 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.170
  • S = 1.00
  • 2650 reflections
  • 194 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)
Table 2
π–π interactions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016620/bx2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016620/bx2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The preparation, properties and applications of Schiff bases are important in the development of coordination chemistry. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles of the title compound agree with those in the related compound 2,3,4-Trimethoxy-6-methylbenzaldehyde (Zhang et al., 2005), as representative example. The dihedral angle between the two phenyl rings is 125.4 (2)°. The crystal structure is stabilized by an intramolecular hydrogen bonding and weak π–π and C—H···π interactions ( Table 1 and Table 2).

Experimental

To a solution of p-toluidine (0.535 g, 5 mmol) and potassium acetate (0.980 g, 10 mmol) in distilled water (10 ml), 2,3,4-Trimethoxy-6-methylbenzaldehyde (1.04 g, 5 mmol) in ethylalcohol (20 ml) was added drop by drop, the solution was stirred for 1 h at reflux temperature. The precipitate was filtered and dried. 10 mg of (I) was dissolved in 15 ml ethanol and the solution was allowed to evaporate at room temperature. Straw yellow single crystals of the title compound were formed after one week.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), drawn with 30% probability ellipsoids.

Crystal data

C17H19NO3Z = 2
Mr = 285.33F000 = 304
Triclinic, P1Dx = 1.231 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.3126 (13) ÅCell parameters from 1209 reflections
b = 9.9938 (17) Åθ = 2.4–26.5º
c = 10.8661 (19) ŵ = 0.08 mm1
α = 110.102 (2)ºT = 298 (2) K
β = 111.995 (2)ºBlock, yellow
γ = 92.7000 (10)º0.50 × 0.48 × 0.47 mm
V = 769.8 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2650 independent reflections
Radiation source: fine-focus sealed tube1571 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −9→9
Tmin = 0.959, Tmax = 0.962k = −7→11
3966 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.170  w = 1/[σ2(Fo2) + (0.0809P)2 + 0.0591P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2650 reflectionsΔρmax = 0.19 e Å3
194 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6434 (3)0.0882 (2)0.7849 (2)0.0637 (6)
O10.1396 (2)0.11706 (18)0.64766 (19)0.0619 (5)
O20.0101 (2)0.3729 (2)0.67375 (19)0.0642 (5)
O30.2329 (2)0.62688 (18)0.78978 (19)0.0626 (5)
C10.4895 (3)0.1089 (3)0.7390 (3)0.0489 (6)
H10.39880.02680.68460.059*
C20.4379 (3)0.2505 (2)0.7625 (2)0.0424 (6)
C30.2546 (3)0.2493 (2)0.7129 (2)0.0457 (6)
C40.1898 (3)0.3749 (3)0.7225 (2)0.0468 (6)
C50.3079 (3)0.5078 (3)0.7853 (2)0.0471 (6)
C60.4884 (3)0.5112 (3)0.8370 (2)0.0470 (6)
H60.56640.60040.88040.056*
C70.5564 (3)0.3853 (3)0.8261 (2)0.0452 (6)
C80.0442 (5)0.0901 (4)0.7236 (4)0.0963 (11)
H8A0.12540.08730.81250.144*
H8B−0.0376−0.00150.66600.144*
H8C−0.01980.16630.74380.144*
C9−0.0840 (4)0.3143 (4)0.5226 (3)0.0889 (11)
H9A−0.02450.35860.48150.133*
H9B−0.20180.33330.49770.133*
H9C−0.09000.21120.48580.133*
C100.3479 (4)0.7643 (3)0.8476 (3)0.0751 (9)
H10A0.42780.78540.94560.113*
H10B0.27900.83850.84480.113*
H10C0.41440.76160.79150.113*
C110.7545 (3)0.4004 (3)0.8838 (3)0.0616 (7)
H11A0.80960.50150.92590.092*
H11B0.78660.34960.80660.092*
H11C0.79360.35990.95580.092*
C120.6728 (3)−0.0566 (3)0.7476 (3)0.0504 (6)
C130.7910 (3)−0.0901 (3)0.8552 (3)0.0649 (8)
H130.8417−0.02050.94920.078*
C140.8357 (4)−0.2241 (3)0.8266 (4)0.0736 (8)
H140.9156−0.24510.90090.088*
C150.7636 (5)−0.3261 (3)0.6901 (4)0.0758 (9)
H150.7945−0.41690.67080.091*
C160.6450 (4)−0.2958 (3)0.5803 (3)0.0746 (9)
H160.5953−0.36600.48670.090*
C170.5994 (4)−0.1610 (3)0.6089 (3)0.0614 (7)
H170.5190−0.14040.53450.074*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0507 (14)0.0530 (14)0.0845 (16)0.0168 (11)0.0250 (12)0.0260 (12)
O10.0464 (10)0.0564 (11)0.0774 (13)0.0030 (8)0.0300 (9)0.0160 (9)
O20.0420 (10)0.0785 (13)0.0730 (13)0.0211 (9)0.0266 (9)0.0264 (10)
O30.0661 (12)0.0558 (11)0.0766 (12)0.0272 (9)0.0343 (10)0.0311 (9)
C10.0447 (15)0.0542 (15)0.0534 (14)0.0107 (12)0.0250 (12)0.0224 (12)
C20.0423 (13)0.0477 (14)0.0424 (13)0.0130 (11)0.0208 (11)0.0194 (10)
C30.0430 (14)0.0489 (15)0.0461 (13)0.0089 (11)0.0227 (11)0.0150 (11)
C40.0398 (14)0.0578 (16)0.0471 (14)0.0158 (12)0.0220 (11)0.0202 (11)
C50.0522 (15)0.0507 (15)0.0475 (14)0.0196 (12)0.0266 (12)0.0219 (11)
C60.0465 (14)0.0481 (14)0.0461 (13)0.0063 (11)0.0197 (11)0.0181 (11)
C70.0427 (14)0.0535 (15)0.0458 (13)0.0130 (12)0.0214 (11)0.0230 (11)
C80.110 (3)0.081 (2)0.134 (3)0.0123 (19)0.084 (3)0.046 (2)
C90.0557 (18)0.108 (3)0.075 (2)0.0228 (18)0.0085 (16)0.0230 (19)
C100.094 (2)0.0561 (18)0.080 (2)0.0248 (16)0.0366 (18)0.0302 (15)
C110.0456 (15)0.0611 (17)0.0775 (18)0.0098 (12)0.0219 (14)0.0304 (14)
C120.0419 (14)0.0499 (15)0.0683 (17)0.0136 (11)0.0293 (13)0.0256 (13)
C130.0525 (16)0.0590 (17)0.0702 (18)0.0132 (13)0.0153 (14)0.0215 (14)
C140.0603 (18)0.071 (2)0.094 (2)0.0209 (15)0.0252 (17)0.0437 (18)
C150.094 (2)0.0582 (19)0.104 (3)0.0350 (17)0.061 (2)0.0383 (18)
C160.099 (2)0.0641 (19)0.0689 (19)0.0214 (17)0.0485 (18)0.0202 (15)
C170.0710 (18)0.0653 (18)0.0662 (18)0.0230 (14)0.0393 (15)0.0334 (15)

Geometric parameters (Å, °)

N1—C11.244 (3)C9—H9A0.9600
N1—C121.422 (3)C9—H9B0.9600
O1—C31.376 (3)C9—H9C0.9600
O1—C81.416 (3)C10—H10A0.9600
O2—C41.382 (3)C10—H10B0.9600
O2—C91.409 (3)C10—H10C0.9600
O3—C51.363 (3)C11—H11A0.9600
O3—C101.423 (3)C11—H11B0.9600
C1—C21.464 (3)C11—H11C0.9600
C1—H10.9300C12—C131.373 (4)
C2—C71.410 (3)C12—C171.379 (4)
C2—C31.411 (3)C13—C141.370 (4)
C3—C41.375 (3)C13—H130.9300
C4—C51.396 (3)C14—C151.355 (4)
C5—C61.385 (3)C14—H140.9300
C6—C71.389 (3)C15—C161.372 (4)
C6—H60.9300C15—H150.9300
C7—C111.505 (3)C16—C171.380 (4)
C8—H8A0.9600C16—H160.9300
C8—H8B0.9600C17—H170.9300
C8—H8C0.9600
C1—N1—C12119.4 (2)O2—C9—H9C109.5
C3—O1—C8116.2 (2)H9A—C9—H9C109.5
C4—O2—C9114.82 (19)H9B—C9—H9C109.5
C5—O3—C10117.8 (2)O3—C10—H10A109.5
N1—C1—C2126.0 (2)O3—C10—H10B109.5
N1—C1—H1117.0H10A—C10—H10B109.5
C2—C1—H1117.0O3—C10—H10C109.5
C7—C2—C3118.4 (2)H10A—C10—H10C109.5
C7—C2—C1125.0 (2)H10B—C10—H10C109.5
C3—C2—C1116.5 (2)C7—C11—H11A109.5
C4—C3—O1120.0 (2)C7—C11—H11B109.5
C4—C3—C2121.8 (2)H11A—C11—H11B109.5
O1—C3—C2118.1 (2)C7—C11—H11C109.5
C3—C4—O2121.5 (2)H11A—C11—H11C109.5
C3—C4—C5119.4 (2)H11B—C11—H11C109.5
O2—C4—C5119.1 (2)C13—C12—C17118.6 (2)
O3—C5—C6124.8 (2)C13—C12—N1117.4 (2)
O3—C5—C4115.7 (2)C17—C12—N1123.8 (2)
C6—C5—C4119.5 (2)C14—C13—C12121.1 (3)
C5—C6—C7122.0 (2)C14—C13—H13119.4
C5—C6—H6119.0C12—C13—H13119.4
C7—C6—H6119.0C15—C14—C13120.0 (3)
C6—C7—C2118.9 (2)C15—C14—H14120.0
C6—C7—C11117.9 (2)C13—C14—H14120.0
C2—C7—C11123.2 (2)C14—C15—C16120.2 (3)
O1—C8—H8A109.5C14—C15—H15119.9
O1—C8—H8B109.5C16—C15—H15119.9
H8A—C8—H8B109.5C15—C16—C17119.9 (3)
O1—C8—H8C109.5C15—C16—H16120.0
H8A—C8—H8C109.5C17—C16—H16120.0
H8B—C8—H8C109.5C12—C17—C16120.1 (3)
O2—C9—H9A109.5C12—C17—H17119.9
O2—C9—H9B109.5C16—C17—H17119.9
H9A—C9—H9B109.5
C12—N1—C1—C2−177.3 (2)O2—C4—C5—C6178.8 (2)
N1—C1—C2—C78.3 (4)O3—C5—C6—C7−178.4 (2)
N1—C1—C2—C3−173.8 (2)C4—C5—C6—C71.2 (3)
C8—O1—C3—C4−70.8 (3)C5—C6—C7—C2−1.1 (3)
C8—O1—C3—C2112.1 (3)C5—C6—C7—C11179.2 (2)
C7—C2—C3—C41.3 (3)C3—C2—C7—C6−0.2 (3)
C1—C2—C3—C4−176.7 (2)C1—C2—C7—C6177.7 (2)
C7—C2—C3—O1178.33 (19)C3—C2—C7—C11179.6 (2)
C1—C2—C3—O10.3 (3)C1—C2—C7—C11−2.6 (4)
O1—C3—C4—O23.0 (3)C1—N1—C12—C13−136.1 (3)
C2—C3—C4—O2−180.0 (2)C1—N1—C12—C1748.6 (4)
O1—C3—C4—C5−178.2 (2)C17—C12—C13—C14−0.1 (4)
C2—C3—C4—C5−1.2 (3)N1—C12—C13—C14−175.7 (2)
C9—O2—C4—C3−72.5 (3)C12—C13—C14—C150.3 (4)
C9—O2—C4—C5108.7 (3)C13—C14—C15—C16−0.3 (5)
C10—O3—C5—C62.1 (3)C14—C15—C16—C170.2 (4)
C10—O3—C5—C4−177.6 (2)C13—C12—C17—C160.0 (4)
C3—C4—C5—O3179.6 (2)N1—C12—C17—C16175.2 (2)
O2—C4—C5—O3−1.6 (3)C15—C16—C17—C120.0 (4)
C3—C4—C5—C6−0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.322.714 (3)105
C8—H8C···O20.962.473.062 (5)120
C9—H9C···O10.962.533.079 (4)116
C10—H10C···Cg2i0.962.983.894 (4)160

Symmetry codes: (i) x, y+1, z.

Table 2 π–π interactions (Å, °)

Cg1 is the centroid of ring C2–C7. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgI-CgJCgI···CgJDihedral angleInterplanar distanceOffset
Cg1-Cg1i4.236 (1)03.523 (1)2.352

Symmetry code: (i) 1-x, 1-y, 2-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2141).

References

  • Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W.-J., Lu, M., Li, C.-B. & Zhou, W.-Y. (2005). Acta Cryst. E61, o3222–o3223.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography