PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 July 1; 64(Pt 7): m902.
Published online 2008 June 7. doi:  10.1107/S1600536808012439
PMCID: PMC2961675

catena-Poly[[di-μ-bromido-dicopper(I)]bis­[μ-η21-4-(2-allyl-2H-tetra­zol-5-yl)pyridine]]

Abstract

The title compound, [CuBr(C9H9N5)]n, prepared by the solvothermal treatment of CuBr with 4-(2-allyl-2H-tetra­zol-5-yl)pyridine, is a new homometallic CuI–olefin coordination polymer in which dinuclear Cu2Br2 units are linked by the organic olefin ligand 4-(2-allyl-2H-tetra­zol-5-yl)pyridine, which acts as a bidentate ligand connecting two neighbouring Cu2Br2 units through the pyridine N atom and the double bond of the allyl group. The coordination of Cu(I) is slightly distorted tetrahedral.

Related literature

For the solvothermal synthesis and related structures, see: Ye et al. (2005 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m902-scheme1.jpg

Experimental

Crystal data

  • [CuBr(C9H9N5)]
  • M r = 330.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m902-efi2.jpg
  • a = 17.502 (3) Å
  • b = 12.047 (2) Å
  • c = 13.664 (3) Å
  • β = 129.52 (3)°
  • V = 2222.4 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.54 mm−1
  • T = 293 (2) K
  • 0.2 × 0.15 × 0.1 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.661, T max = 1 (expected range = 0.380–0.575)
  • 11222 measured reflections
  • 2552 independent reflections
  • 1962 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.088
  • S = 1.07
  • 2552 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Johnson & Burnett, 1997 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012439/dn2345sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012439/dn2345Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Hydrothermal or solvothermal syntheses can offer some interesting reactions and compounds which can't be obtain through conventional solution techniques. In sealed tube, unstable copper (I) salt can exist under vacuums, and then interesting copper (I) organometallic compound can be prepared. The title compound is obtained through solvothermal treatment of CuBr and 4-(2-allyl-2H-tetrazol -5-yl) pyridine in methanol solvent at 75°C.

The copper(I) is coordinated to two organic ligands and two bridging Br atoms to fulfill its tetrahedral coordination environment (Fig 1).The organic ligand acts as a bidentate ligand connecting two neighbouring Cu2Br2 dinucler units through N atom from pyridine ring and double bond of the allyl group thus leading to an homometallic CuI olefin coordination polymer developing along the b axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to CuI.

Experimental

A mixture of 4-(2-allyl-2H-tetrazol-5-yl) pyridine(20 mg, 0.2 mmol), CuBr (35 mg,0.4 mmol), and methanol (2 ml) sealed in a glass tube were maintained at 75 °C with yield 75%. Crystals suitable for X-ray analysis were obtained after 5 days

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) with Uiso(H) = 1.2Ueq (C).

Figures

Fig. 1.
The one-dimensional structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, y, 3/2 - z; (ii)x, y - 1, z; (C) x, ...

Crystal data

[CuBr(C9H9N5)]F(000) = 1296
Mr = 330.66Dx = 1.977 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10074 reflections
a = 17.502 (3) Åθ = 3.0–28.8°
b = 12.047 (2) ŵ = 5.54 mm1
c = 13.664 (3) ÅT = 293 K
β = 129.52 (3)°Block, colorless
V = 2222.4 (12) Å30.2 × 0.15 × 0.1 mm
Z = 8

Data collection

Rigaku Mercury2 diffractometer2552 independent reflections
Radiation source: fine-focus sealed tube1962 reflections with I > 2σ(I)
graphiteRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = −22→22
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −15→15
Tmin = 0.661, Tmax = 1l = −17→17
11222 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.03P)2 + 4.1679P] where P = (Fo2 + 2Fc2)/3
2552 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = −0.77 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.39530 (4)−0.00789 (3)0.59335 (4)0.03898 (15)
Br10.41669 (3)−0.00735 (3)0.79367 (3)0.03492 (12)
N10.4034 (2)0.4106 (2)0.5433 (3)0.0379 (8)
N20.3650 (3)0.4582 (3)0.3597 (3)0.0448 (8)
N30.3835 (3)0.3508 (3)0.3743 (3)0.0475 (9)
N40.4055 (2)0.3250 (2)0.4833 (3)0.0363 (7)
N50.3645 (2)0.8317 (2)0.5386 (3)0.0319 (7)
C10.2905 (3)0.0849 (3)0.4367 (4)0.0397 (9)
H1A0.29090.08070.36610.048*
H1B0.22430.08360.41050.048*
C20.3548 (3)0.1574 (3)0.5299 (4)0.0376 (9)
H20.32950.20010.56480.045*
C30.4350 (3)0.2120 (3)0.5368 (4)0.0449 (10)
H3A0.49500.21570.62460.054*
H3B0.44880.16810.49020.054*
C40.3456 (3)0.6920 (3)0.4013 (3)0.0356 (9)
H40.33170.67420.32510.043*
C50.3673 (2)0.6090 (3)0.4859 (3)0.0285 (7)
C60.3807 (3)0.7513 (3)0.6168 (3)0.0338 (8)
H60.39090.77110.69010.041*
C70.3451 (3)0.8007 (3)0.4310 (3)0.0366 (9)
H70.33040.85540.37320.044*
C80.3830 (3)0.6403 (3)0.5945 (3)0.0338 (8)
H80.39510.58710.65220.041*
C90.3769 (3)0.4926 (3)0.4619 (3)0.0315 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0551 (3)0.0158 (2)0.0379 (3)0.0008 (2)0.0258 (2)−0.00052 (17)
Br10.0433 (2)0.0305 (2)0.0396 (2)−0.00627 (16)0.03041 (19)−0.00676 (15)
N10.0484 (19)0.0190 (15)0.0431 (19)0.0017 (14)0.0276 (17)0.0017 (13)
N20.062 (2)0.0236 (16)0.043 (2)0.0066 (16)0.0307 (18)0.0007 (14)
N30.068 (2)0.0244 (17)0.048 (2)0.0036 (16)0.036 (2)−0.0030 (14)
N40.0409 (18)0.0135 (14)0.050 (2)0.0011 (13)0.0271 (17)−0.0007 (13)
N50.0372 (17)0.0154 (14)0.0352 (17)0.0002 (12)0.0193 (15)−0.0010 (12)
C10.039 (2)0.0268 (19)0.048 (2)0.0042 (16)0.0248 (19)0.0102 (17)
C20.057 (2)0.0164 (17)0.047 (2)0.0117 (17)0.037 (2)0.0068 (15)
C30.044 (2)0.0163 (18)0.064 (3)0.0055 (16)0.029 (2)0.0065 (17)
C40.051 (2)0.0209 (17)0.031 (2)−0.0029 (16)0.0243 (19)−0.0024 (14)
C50.0269 (17)0.0171 (16)0.0332 (18)−0.0031 (14)0.0153 (16)−0.0011 (13)
C60.045 (2)0.0199 (17)0.038 (2)−0.0036 (15)0.0272 (19)−0.0026 (15)
C70.049 (2)0.0185 (17)0.037 (2)0.0002 (16)0.0248 (19)0.0047 (15)
C80.042 (2)0.0199 (17)0.036 (2)−0.0025 (15)0.0236 (18)0.0034 (14)
C90.0322 (17)0.0168 (17)0.0372 (19)−0.0029 (14)0.0182 (16)0.0003 (14)

Geometric parameters (Å, °)

Cu1—N5i2.017 (3)C1—H1A0.9700
Cu1—C12.050 (4)C1—H1B0.9700
Cu1—C22.106 (3)C2—C31.496 (6)
Cu1—Br12.5156 (9)C2—H20.9800
Cu1—Br1ii2.5973 (11)C3—H3A0.9700
Br1—Cu1ii2.5973 (11)C3—H3B0.9700
N1—C91.330 (4)C4—C71.373 (5)
N1—N41.332 (4)C4—C51.386 (5)
N2—N31.317 (4)C4—H40.9300
N2—C91.340 (5)C5—C81.378 (5)
N3—N41.317 (5)C5—C91.475 (4)
N4—C31.475 (4)C6—C81.378 (5)
N5—C61.332 (4)C6—H60.9300
N5—C71.334 (4)C7—H70.9300
N5—Cu1iii2.017 (3)C8—H80.9300
C1—C21.351 (5)
N5i—Cu1—C1106.55 (13)C3—C2—Cu1109.5 (2)
N5i—Cu1—C2144.30 (14)C1—C2—H2115.7
C1—Cu1—C237.93 (14)C3—C2—H2115.7
N5i—Cu1—Br1103.04 (9)Cu1—C2—H2115.7
C1—Cu1—Br1123.33 (12)N4—C3—C2110.9 (3)
C2—Cu1—Br1102.94 (10)N4—C3—H3A109.5
N5i—Cu1—Br1ii99.28 (9)C2—C3—H3A109.5
C1—Cu1—Br1ii124.96 (11)N4—C3—H3B109.5
C2—Cu1—Br1ii102.07 (11)C2—C3—H3B109.5
Br1—Cu1—Br1ii95.64 (4)H3A—C3—H3B108.0
Cu1—Br1—Cu1ii84.36 (4)C7—C4—C5119.4 (3)
C9—N1—N4101.0 (3)C7—C4—H4120.3
N3—N2—C9106.6 (3)C5—C4—H4120.3
N4—N3—N2105.6 (3)C8—C5—C4117.6 (3)
N3—N4—N1114.3 (3)C8—C5—C9121.8 (3)
N3—N4—C3122.5 (3)C4—C5—C9120.6 (3)
N1—N4—C3123.2 (3)N5—C6—C8123.3 (3)
C6—N5—C7117.1 (3)N5—C6—H6118.3
C6—N5—Cu1iii121.9 (2)C8—C6—H6118.3
C7—N5—Cu1iii119.8 (2)N5—C7—C4123.2 (3)
C2—C1—Cu173.3 (2)N5—C7—H7118.4
C2—C1—H1A116.2C4—C7—H7118.4
Cu1—C1—H1A116.2C6—C8—C5119.3 (3)
C2—C1—H1B116.2C6—C8—H8120.3
Cu1—C1—H1B116.2C5—C8—H8120.3
H1A—C1—H1B113.2N1—C9—N2112.5 (3)
C1—C2—C3122.0 (4)N1—C9—C5123.2 (3)
C1—C2—Cu168.8 (2)N2—C9—C5124.2 (3)

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y, −z+3/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2345).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Johnson, C. K. & Burnett, M. N. (1997). ORTEPIII University of Glasgow, Scotland.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev 34, 208–225. [PubMed]
  • Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed 46, 6852–6856. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography